Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomed Sci ; 31(1): 43, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649998

RESUMEN

Dengue viruses (DENV) are positive-stranded RNA viruses belonging to the Flaviviridae family. DENV is the causative agent of dengue, the most rapidly spreading viral disease transmitted by mosquitoes. Each year, millions of people contract the virus through bites from infected female mosquitoes of the Aedes species. In the majority of individuals, the infection is asymptomatic, and the immune system successfully manages to control virus replication within a few days. Symptomatic individuals may present with a mild fever (Dengue fever or DF) that may or may not progress to a more critical disease termed Dengue hemorrhagic fever (DHF) or the fatal Dengue shock syndrome (DSS). In the absence of a universally accepted prophylactic vaccine or therapeutic drug, treatment is mostly restricted to supportive measures. Similar to many other viruses that induce acute illness, DENV has developed several ways to modulate host metabolism to create an environment conducive to genome replication and the dissemination of viral progeny. To search for new therapeutic options, understanding the underlying host-virus regulatory system involved in various biological processes of the viral life cycle is essential. This review aims to summarize the complex interaction between DENV and the host cellular machinery, comprising regulatory mechanisms at various molecular levels such as epigenetic modulation of the host genome, transcription of host genes, translation of viral and host mRNAs, post-transcriptional regulation of the host transcriptome, post-translational regulation of viral proteins, and pathways involved in protein degradation.


Asunto(s)
Virus del Dengue , Dengue , Virus del Dengue/fisiología , Virus del Dengue/patogenicidad , Virus del Dengue/genética , Humanos , Dengue/virología , Animales , Interacciones Huésped-Patógeno , Replicación Viral
2.
RNA Biol ; 20(1): 805-816, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37796112

RESUMEN

DENV infection poses a major health concern globally and the pathophysiology relies heavily on host-cellular machinery. Although virus replication relies heavily on the host, the mechanistic details of DENV-host interaction is not fully characterized yet. Here, we are focusing on characterizing the mechanistic basis of virus-induced stress on the host cell. Specifically, we aim to characterize the role of the stress modulator ribonuclease Angiogenin during DENV infection. Our results suggested that the levels of Angiogenin are up-regulated in DENV-infected cells and the levels increase proportionately with DENV replication. Our efforts to knockdown Angiogenin using siRNA were unsuccessful in DENV-infected cells but not in mock-infected control. To further investigate the modulation between DENV replication and Angiogenin, we treated Huh7 cells with Ivermectin prior to DENV infection. Our results suggest a significant reduction in DENV replication specifically at the later stages as a consequence of Ivermectin treatment. Interestingly, Angiogenin levels were also found to be decreased proportionately. Our results suggest that Angiogenin modulation during DENV infection is important for DENV replication and pathogenesis.


Asunto(s)
Dengue , Ivermectina , Humanos , Ivermectina/farmacología , Ribonucleasa Pancreática/genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA