Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 494(7436): 238-42, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23354054

RESUMEN

The basal ganglia are subcortical nuclei that control voluntary actions, and they are affected by a number of debilitating neurological disorders. The prevailing model of basal ganglia function proposes that two orthogonal projection circuits originating from distinct populations of spiny projection neurons (SPNs) in the striatum--the so-called direct and indirect pathways--have opposing effects on movement: activity of direct-pathway SPNs is thought to facilitate movement, whereas activity of indirect-pathway SPNs is presumed to inhibit movement. This model has been difficult to test owing to the lack of methods to selectively measure the activity of direct- and indirect-pathway SPNs in freely moving animals. Here we develop a novel in vivo method to specifically measure direct- and indirect-pathway SPN activity, using Cre-dependent viral expression of the genetically encoded calcium indicator (GECI) GCaMP3 in the dorsal striatum of D1-Cre (direct-pathway-specific) and A2A-Cre (indirect-pathway-specific) mice. Using fibre optics and time-correlated single-photon counting (TCSPC) in mice performing an operant task, we observed transient increases in neural activity in both direct- and indirect-pathway SPNs when animals initiated actions, but not when they were inactive. Concurrent activation of SPNs from both pathways in one hemisphere preceded the initiation of contraversive movements and predicted the occurrence of specific movements within 500 ms. These observations challenge the classical view of basal ganglia function and may have implications for understanding the origin of motor symptoms in basal ganglia disorders.


Asunto(s)
Movimiento/fisiología , Neostriado/citología , Neostriado/fisiología , Vías Nerviosas/fisiología , Animales , Señalización del Calcio , Femenino , Tecnología de Fibra Óptica/métodos , Fluorescencia , Integrasas/genética , Integrasas/metabolismo , Mediciones Luminiscentes/métodos , Masculino , Ratones , Modelos Neurológicos , Enfermedad de Parkinson , Fotones
2.
Nat Protoc ; 9(6): 1213-28, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24784819

RESUMEN

Recent advances in genetically encoded fluorescent sensors enable the monitoring of cellular events from genetically defined groups of neurons in vivo. In this protocol, we describe how to use a time-correlated single-photon counting (TCSPC)-based fiber optics system to measure the intensity, emission spectra and lifetime of fluorescent biosensors expressed in deep brain structures in freely moving mice. When combined with Cre-dependent selective expression of genetically encoded Ca(2+) indicators (GECIs), this system can be used to measure the average neural activity from a specific population of cells in mice performing complex behavioral tasks. As an example, we used viral expression of GCaMPs in striatal projection neurons (SPNs) and recorded the fluorescence changes associated with calcium spikes from mice performing a lever-pressing operant task. The whole procedure, consisting of virus injection, behavior training and optical recording, takes 3-4 weeks to complete. With minor adaptations, this protocol can also be applied to recording cellular events from other cell types in deep brain regions, such as dopaminergic neurons in the ventral tegmental area. The simultaneously recorded fluorescence signals and behavior events can be used to explore the relationship between the neural activity of specific brain circuits and behavior.


Asunto(s)
Técnicas Biosensibles/métodos , Mapeo Encefálico/métodos , Encéfalo/citología , Neuroimagen Funcional/métodos , Actividad Motora/fisiología , Neuronas/metabolismo , Fotones , Animales , Tecnología de Fibra Óptica/métodos , Fluorescencia , Ratones
3.
J Drug Deliv ; 2011: 980720, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21603162

RESUMEN

We demonstrated that hydrophobic derivatives of the nonsteroidal anti-inflammatory drug (NSAID)flufenamic acid (FA), can be formed into stable nanometer-sized prodrugs (nanoprodrugs) that inhibit the growth of glioma cells, suggesting their potential application as anticancer agent. We synthesized highly hydrophobic monomeric and dimeric prodrugs of FA via esterification and prepared nanoprodrugs using spontaneous emulsification mechanism. The nanoprodrugs were in the size range of 120 to 140 nm and physicochemically stable upon long-term storage as aqueous suspension, which is attributed to the strong hydrophobic interaction between prodrug molecules. Importantly, despite the highly hydrophobic nature and water insolubility, nanoprodrugs could be readily activated into the parent drug by porcine liver esterase, presenting a potential new strategy for novel NSAID prodrug design. The nanoprodrug inhibited the growth of U87-MG glioma cells with IC(50) of 20 µM, whereas FA showed IC(50) of 100 µM, suggesting that more efficient drug delivery was achieved with nanoprodrugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA