Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Xenotransplantation ; 30(4): e12812, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37504492

RESUMEN

INTRODUCTION: Expression of human complement pathway regulatory proteins (hCPRP's) such as CD46 or CD55 has been associated with improved survival of pig organ xenografts in multiple different models. Here we evaluate the hypothesis that an increased human CD46 gene dose, through homozygosity or additional expression of a second hCPRP, is associated with increased protein expression and with improved protection from injury when GTKO lung xenografts are perfused with human blood. METHODS: Twenty three GTKO lungs heterozygous for human CD46 (GTKO.heteroCD46), 10 lungs homozygous for hCD46 (GTKO.homoCD46), and six GTKO.homoCD46 lungs also heterozygous for hCD55 (GTKO.homoCD46.hCD55) were perfused with human blood for up to 4 h in an ex vivo circuit. RESULTS: Relative to GTKO.heteroCD46 (152 min, range 5-240; 6/23 surviving at 4 h), survival was significantly improved for GTKO.homoCD46 (>240 min, range 45-240, p = .034; 7/10 surviving at 4 h) or GTKO.homoCD46.hCD55 lungs (>240 min, p = .001; 6/6 surviving at 4 h). Homozygosity was associated with increased capillary expression of hCD46 (p < .0001). Increased hCD46 expression was associated with significantly prolonged lung survival (p = .048),) but surprisingly not with reduction in measured complement factor C3a. Hematocrit, monocyte count, and pulmonary vascular resistance were not significantly altered in association with increased hCD46 gene dose or protein expression. CONCLUSION: Genetic engineering approaches designed to augment hCPRP activity - increasing the expression of hCD46 through homozygosity or co-expressing hCD55 with hCD46 - were associated with prolonged GTKO lung xenograft survival. Increased expression of hCD46 was associated with reduced coagulation cascade activation, but did not further reduce complement activation relative to lungs with relatively low CD46 expression. We conclude that coagulation pathway dysregulation contributes to injury in GTKO pig lung xenografts perfused with human blood, and that the survival advantage for lungs with increased hCPRP expression is likely attributable to improved endothelial thromboregulation.


Asunto(s)
Pulmón , Animales , Porcinos , Humanos , Animales Modificados Genéticamente , Trasplante Heterólogo , Xenoinjertos , Perfusión
2.
Xenotransplantation ; 30(6): e12828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767640

RESUMEN

Thrombomodulin is important for the production of activated protein C (APC), a molecule with significant regulatory roles in coagulation and inflammation. To address known molecular incompatibilities between pig thrombomodulin and human thrombin that affect the conversion of protein C into APC, GalTKO.hCD46 pigs have been genetically modified to express human thrombomodulin (hTBM). The aim of this study was to evaluate the impact of transgenic hTBM expression on the coagulation dysregulation that is observed in association with lung xenograft injury in an established lung perfusion model, with and without additional blockade of nonphysiologic interactions between pig vWF and human GPIb axis. Expression of hTBM was variable between pigs at the transcriptional and protein level. hTBM increased the activation of human protein C and inhibited thrombosis in an in vitro flow perfusion assay, confirming that the expressed protein was functional. Decreased platelet activation was observed during ex vivo perfusion of GalTKO.hCD46 lungs expressing hTBM and, in conjunction with transgenic hTBM, blockade of the platelet GPIb receptor further inhibited platelets and increased survival time. Altogether, our data indicate that expression of transgenic hTBM partially addresses coagulation pathway dysregulation associated with pig lung xenograft injury and, in combination with vWF-GP1b-directed strategies, is a promising approach to improve the outcomes of lung xenotransplantation.


Asunto(s)
Proteína C , Factor de von Willebrand , Animales , Porcinos , Humanos , Trasplante Heterólogo , Proteína C/metabolismo , Factor de von Willebrand/metabolismo , Células Endoteliales/metabolismo , Trombomodulina/genética , Animales Modificados Genéticamente/metabolismo , Pulmón/metabolismo , Perfusión
3.
Am J Transplant ; 22(1): 28-45, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34424601

RESUMEN

Galactosyl transferase knock-out pig lungs fail rapidly in baboons. Based on previously identified lung xenograft injury mechanisms, additional expression of human complement and coagulation pathway regulatory proteins, anti-inflammatory enzymes and self-recognition receptors, and knock-down of the ß4Gal xenoantigen were tested in various combinations. Transient life-supporting GalTKO.hCD46 lung function was consistently observed in association with either hEPCR (n = 15), hTBM (n = 4), or hEPCR.hTFPI (n = 11), but the loss of vascular barrier function in the xenograft and systemic inflammation in the recipient typically occurred within 24 h. Co-expression of hEPCR and hTBM (n = 11) and additionally blocking multiple pro-inflammatory innate and adaptive immune mechanisms was more consistently associated with survival >1 day, with one recipient surviving for 31 days. Combining targeted genetic modifications to the lung xenograft with selective innate and adaptive immune suppression enables prolonged initial life-supporting lung function and extends lung xenograft recipient survival, and illustrates residual barriers and candidate treatment strategies that may enable the clinical application of other organ xenografts.


Asunto(s)
Supervivencia de Injerto , Pulmón , Animales , Animales Modificados Genéticamente , Rechazo de Injerto/tratamiento farmacológico , Humanos , Papio , Porcinos , Trasplante Heterólogo
4.
Xenotransplantation ; 29(2): e12731, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35166407

RESUMEN

INTRODUCTION: Platelet sequestration, inflammation, and inappropriate coagulation cascade activation are prominent in liver xenotransplant models and are associated with poor outcomes. Here, we evaluate a cassette of six additional genetic modifications to reduce anti-pig antibody binding (α-1,3-galactosyl transferase knockout [GalTKO]) and target coagulation dysregulation (human endothelial protein C receptor [hEPRC] and thrombomodulin [hTBM]), complement pathway regulation (human membrane cofactor protein, hCD46), inflammation heme oxygenase 1 [hHO-1]), and a self-recognition receptor (integrin-associated protein [hCD47]), as well as donor pharmacologic treatments designed to blunt these phenomena. METHODS: Livers from GaltKO.hCD46 pigs ("2-gene," n = 3) and GalTKO.hCD46 pigs also transgenic for hEPRC, hTBM, hCD47, and hHO-1 ("6-gene," n = 4) were perfused ex vivo with whole human blood. Six-gene pigs were additionally pretreated with desmopressin (DDAVP) and clodronate liposomes to deplete vWF and kupffer cells, respectively. RESULTS: The average perfusion times increased from 304 (±148) min in the 2-gene group to 856 (±61) min in the 6-gene group (p = .010). The average heparin administration was decreased from 8837 U/h in the 2-gene to 1354 U/h in the 6-gene group (p = .047). Platelet sequestration tended to be delayed in the 6-gene group (p = .070), while thromboxane B2 (TXB2, a platelet activation marker) levels were lower over the first hour (p = .044) (401 ± 124 vs. 2048 ± 712 at 60 min). Thrombin production as measured by F1+2 levels tended to be lower in the 6-gene group (p = .058). CONCLUSIONS: The combination of the hEPCR.hTBM.hCD47.hHO-1 cassette along with donor pig DDAVP and clodronate liposome pretreatment was associated with prolonged function of xenoperfused livers, reduced coagulation pathway perturbations, and decreased TXB2 elaboration, and reflects significant progress to modulate liver xenograft injury in a pig to human model.


Asunto(s)
Desamino Arginina Vasopresina , Trombocitopenia , Animales , Animales Modificados Genéticamente , Ácido Clodrónico/farmacología , Supervivencia de Injerto , Hemo-Oxigenasa 1/genética , Humanos , Inflamación , Hígado , Perfusión , Porcinos , Trasplante Heterólogo
5.
Xenotransplantation ; 29(2): e12725, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35234315

RESUMEN

BACKGROUND: Loss of barrier function when GalTKO.hCD46 porcine lungs are perfused with human blood is associated with coagulation pathway dysregulation, innate immune system activation, and rapid sequestration of human formed blood elements. Here, we evaluate whether genetic expression of human tissue factor pathway inhibitor (hTFPI) and human CD47 (hCD47), alone or with combined selectin and integrin adhesion pathway inhibitors, delays GalTKO.hCD46 porcine lung injury or modulates neutrophil and platelet sequestration. METHODS: In a well-established paired ex vivo lung perfusion model, GalTKO.hCD46.hTFPI.hCD47 transgenic porcine lungs (hTFPI.hCD47, n = 7) were compared to GalTKO.hCD46 lungs (reference, n = 5). All lung donor pigs were treated with a thromboxane synthase inhibitor, anti-histamine, and anti-GPIb integrin-blocking Fab, and were pre-treated with Desmopressin. In both genotypes, one lung of each pair was additionally treated with PSGL-1 and GMI-1271 (P- and E-selectin) and IB4 (CD11b/18 integrin) adhesion inhibitors (n = 6 hTFPI.hCD47, n = 3 reference). RESULTS: All except for two reference lungs did not fail within 480 min when experiments were electively terminated. Selectin and integrin adhesion inhibitors moderately attenuated initial pulmonary vascular resistance (PVR) elevation in hTFPI.hCD47 lungs. Neutrophil sequestration was significantly delayed during the early time points following reperfusion and terminal platelet activation was attenuated in association with lungs expressing hTFPI.hCD47, but additional adhesion pathway inhibitors did not show further effects with either lung genotype. CONCLUSION: Expression of hTFPI.hCD47 on porcine lung may be useful as part of an integrated strategy to prevent neutrophil adhesion and platelet activation that are associated with xenograft injury. Additionally, targeting canonical selectin and integrin adhesion pathways reduced PVR elevation associated with hTFPI.hCD47 expression, but did not significantly attenuate neutrophil or platelet sequestration. We conclude that other adhesive mechanisms mediate the residual sequestration of human formed blood elements to pig endothelium that occurs even in the context of the multiple genetic modifications and drug treatments tested here.


Asunto(s)
Antígeno CD47 , Trombocitopenia , Animales , Antígeno CD47/genética , Antígeno CD47/metabolismo , Supervivencia de Injerto , Humanos , Integrinas/metabolismo , Lipoproteínas , Pulmón/metabolismo , Perfusión , Selectinas/metabolismo , Porcinos , Trasplante Heterólogo
6.
Cytokine ; 148: 155580, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34099346

RESUMEN

BACKGROUND: Xenotransplantation is associated with an inflammatory response. The proinflammatory cytokine, TNF-α, downregulates the expression of thrombomodulin (TBM), and induces coagulation dysfunction. Although human (h) TBM-transgenic pigs (p) have been developed to reduce coagulation dysfunction, the effect of TNF-α on the expression of hTBM and its functional activity has not been fully investigated. The aims of this study were to investigate (i) whether the expression of hTBM on pig (p) cells is down-regulated during TNF-α stimulation, and (ii) whether cells from hTBM pigs regulate the inflammatory response. METHODS: TNF-α-producing T, B, and natural killer cells in blood from baboons with pig heart or kidney xenografts were investigated by flow cytometry. TNF-α staining in the grafts was detected by immunohistochemistry. Aortic endothelial cells (AECs) from GTKO/CD46 and GTKO/CD46/hTBM pigs were stimulated by hTNF-α, and the expression of the inflammatory/coagulation regulatory protein, TBM, was investigated. RESULTS: After pig organ xenotransplantation, there was a trend to increases in TNF-α-producing T and natural killer cells in the blood of baboons. In vitro observations demonstrated that after hTNF-α stimulation, there was a significant reduction in the expression of endogenous pTBM on pAECs, and a significant increase in the expression of inflammatory molecules. Blocking of NF-κB signaling significantly up-regulated pTBM expression, and suppressed the inflammatory response induced by hTNF-α in pAECs. Whereas the expression of pTBM mRNA was significantly reduced by hTNF-α stimulation, hTBM expression on the GTKO/CD46/hTBM pAECs was not affected. Furthermore, after hTNF-α stimulation, there was significant suppression of expression of inflammatory molecules on GTKO/CD46/hTBM pAECs compared to GTKO/CD46 pAECs. CONCLUSIONS: The stable expression of hTBM in pig cells may locally regulate the inflammatory response. This will help suppress the inflammatory response and prevent coagulation dysregulation after xenotransplantation.


Asunto(s)
Células Endoteliales/metabolismo , Expresión Génica , Inflamación/genética , Trombomodulina/genética , Transgenes , Animales , Animales Modificados Genéticamente , Coagulación Sanguínea , Quimiocina CCL2/metabolismo , Selectina E/metabolismo , Humanos , Terapia de Inmunosupresión , Inflamación/patología , FN-kappa B/metabolismo , Transducción de Señal , Porcinos , Trasplante Heterólogo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
7.
Xenotransplantation ; 28(6): e12712, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34657336

RESUMEN

The transplantation of organs across species offers the potential to solve the shortage of human organs. While activation of human platelets by human von Willebrand factor (vWF) requires vWF activation by shear stress, contact between human platelets and porcine vWF (pvWF) leads to spontaneous platelet adhesion and activation. This non-physiologic interaction may contribute to the thrombocytopenia and coagulation pathway dysregulation often associated with xenotransplantation of pig organs in nonhuman primates. Pigs genetically modified to decrease antibody and complement-dependent rejection (GTKO.hCD46) were engineered to express humanized pvWF (h*pvWF) by replacing a pvWF gene region that encodes the glycoprotein Ib-binding site with human cDNA orthologs. This modification corrected for non-physiologic human platelet aggregation on exposure to pig plasma, while preserving in vitro platelet activation by collagen. Organs from pigs with h*pvWF demonstrated reduced platelet sequestration during lung (p ≤ .01) and liver (p ≤ .038 within 4 h) perfusion ex vivo with human blood and after pig-to-baboon lung transplantation (p ≤ .007). Residual platelet sequestration and activation were not prevented by the blockade of canonical platelet adhesion pathways. The h*pvWF modification prevents physiologically inappropriate activation of human or baboon platelets by porcine vWF, addressing one cause of the thrombocytopenia and platelet activation observed with xenotransplantation.


Asunto(s)
Trombocitopenia , Factor de von Willebrand , Animales , Plaquetas , Agregación Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria , Porcinos , Trasplante Heterólogo
8.
Xenotransplantation ; 26(2): e12458, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30175863

RESUMEN

BACKGROUND: Elevated pulmonary vascular resistance (PVR), platelet adhesion, coagulation activation, and inflammation are prominent features of xenolung rejection. Here, we evaluate the role of thromboxane and histamine on PVR, and their contribution to other lung xenograft injury mechanisms. METHODS: GalTKO.hCD46 single pig lungs were perfused ex vivo with fresh heparinized human blood: lungs were either treated with 1-Benzylimidazole (1-BIA) combined with histamine receptor blocker famotidine (n = 4) or diphenhydramine (n = 6), 1-BIA alone (n = 6) or were left untreated (n = 9). RESULTS: Six of the nine control experiments (GalTKO.hCD46 untreated), "survived" until elective termination at 4 hours. Without treatment, initial PVR elevation within the first 30 minutes resolved partially over the following hour, and increased progressively during the final 2 hours of perfusion. In contrast, 1-BIA, alone or in addition to either antihistamine treatment, was associated with low stable PVR. Combined treatments significantly lowered the airway pressure when compared to untreated reference. Although platelet and neutrophil sequestration and coagulation cascade activation were not consistently altered by any intervention, increased terminal wet/dry weight ratio in untreated lungs was significantly blunted by combined treatments. CONCLUSION: Combined thromboxane and histamine pathway blockade prevents PVR elevation and significantly inhibits loss of vascular barrier function when GalTKO.hCD46 lungs are perfused with human blood. Platelet activation and platelet and neutrophil sequestration persist in all groups despite efficient complement regulation, and appear to occur independent of thromboxane and histamine antagonism. Our work identifies thromboxane and histamine as key mediators of xenolung injury and defines those pathways as therapeutic targets to achieve successful xenolung transplantation.


Asunto(s)
Supervivencia de Injerto/fisiología , Xenoinjertos/inmunología , Histamina/farmacología , Resistencia Vascular , Animales , Animales Modificados Genéticamente , Plaquetas/inmunología , Humanos , Pulmón/metabolismo , Trasplante de Pulmón/métodos , Porcinos , Trasplante Heterólogo/métodos , Resistencia Vascular/fisiología
9.
Xenotransplantation ; 25(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29067741

RESUMEN

In addition to immune barriers, molecular incompatibilities between species are predicted to limit pig liver survival in primate xenotransplantation models. Assessment and measurement of synthetic function of genetically modified porcine livers after ex vivo perfusion with human blood have not previously been described. Eight porcine livers from α1,3-galactosyl transferase knockout and human membrane cofactor (GalTKO.hCD46), six livers from GalTKO.hCD46 and N-glycolylneuraminic acid knockout (GalTKO.hCD46.Neu5GcKO), and six livers from GalTKO.hCD46 with humanized decay-accelerating factor (hCD55), endothelial protein C receptor (hEPCR), tissue factor pathway inhibitor (hTFPI), and integrin-associated protein (hCD47) (GalTKO.hCD46.hCD55.hEPCR.hTFPI.hCD47) pigs were perfused with human blood under physiologic conditions. Timed blood samples were tested for liver enzymes and for pig-specific albumin production via Western blot. Porcine albumin levels increased with time in all experiments. By densitometry, GalTKO.hCD46.Neu5GcKO livers had the highest albumin levels, measured both as total produced, and when controlled for perfusion duration, compared to GalTKO.hCD46 (P = .068) and GalTKO.hCD46.hCD55.hEPCR.hTFPI.hCD47 livers (P = .04). Porcine livers perfused with human blood demonstrated the synthetic ability to produce albumin in all cases. GalTKO.hCD46.Neu5GcKO pig livers demonstrated the most robust albumin production. This suggests that the Neu5GcKO phenotype provides a protective effect on the graft due to decreased human antibody recognition and graft injury.


Asunto(s)
Supervivencia de Injerto/inmunología , Hígado/inmunología , Trasplante de Pulmón , Trasplante Heterólogo , Animales , Animales Modificados Genéticamente , Antígenos CD55/genética , Circulación Extracorporea/métodos , Técnicas de Inactivación de Genes , Humanos , Hígado/metabolismo , Trasplante de Pulmón/métodos , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/inmunología , Porcinos
10.
Xenotransplantation ; 25(2): e12381, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29359469

RESUMEN

BACKGROUND: Alongside the need to develop more effective and less toxic immunosuppression, the shortage of human organs available for organ transplantation is one of the major hurdles facing the field. Research into xenotransplantation, as an alternative source of organs, has unveiled formidable challenges. Porcine lungs perfused with human blood rapidly sequester the majority of circulating neutrophils and platelets, which leads to inflammation and organ failure within hours, and is not significantly attenuated by genetic modifications to the pig targeted to diminish antibody binding and complement and coagulation cascade activation. METHODS: Here, we model the interaction of freshly isolated human leukocytes with xenotransplanted vasculature under physiologic flow conditions using microfluidic channels coated with porcine endothelial cells. Both isolated human neutrophils and whole human blood were perfused over transgenic pig aortic endothelial cells that had been activated with rhTNF-α or rhIL-4 using the BioFlux system. Novel compounds GMI-1271 and rPSGL1.Fc were tested as E- and P- selectin antagonists, respectively. Cellular adhesion and rolling events were tracked using FIJI (imageJ). RESULTS: Porcine endothelium activated with either rhTNF-α or rhIL-4 expressed high amounts of selectins, to which isolated human neutrophils readily rolled and tethered. Both E-and P-selectin antagonism significantly reduced the number of neutrophils rolling and rolling distance in a dose-dependent manner, with near total inhibition at higher doses (P < .001). Similarly, with whole human blood, selectin blocking compounds exhibited dose-dependent inhibition of prevalent leukocyte adhesion and severe endothelial injury (Untreated: 394 ± 97 PMNs/hpf, 57 ± 6% loss EC; GMI1271+rPSGL1.Fc: 23 ± 9 PMNs/hpf, 8 ± 6% loss EC P < .01). CONCLUSIONS: Selectin blockade may be useful as part of an integrated strategy to prevent neutrophil-mediated organ xenograft injury, especially during the early time points following reperfusion.


Asunto(s)
Selectina E/metabolismo , Células Endoteliales/inmunología , Leucocitos/inmunología , Selectina-P/metabolismo , Animales , Animales Modificados Genéticamente , Adhesión Celular/fisiología , Humanos , Neutrófilos/inmunología , Porcinos , Trasplante Heterólogo/métodos
11.
Xenotransplantation ; 24(2)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28303661

RESUMEN

BACKGROUND: Genetically engineered pigs could provide a source of kidneys for clinical transplantation. The two longest kidney graft survivals reported to date have been 136 and 310 days, but graft survival >30 days has been unusual until recently. METHODS: Donor pigs (n=4) were on an α1,3-galactosyltransferase gene-knockout (GTKO)/human complement regulatory protein (CD46) background (GTKO/CD46). In addition, the pigs were transgenic for at least one human coagulation regulatory protein. Two baboons received a kidney from a six-gene pig (GroupA) and two from a three-gene pig (GroupB). Immunosuppressive therapy was identical in all four cases and consisted of anti-thymoglobulin (ATG)+anti-CD20mAb (induction) and anti-CD40mAb+rapamycin+corticosteroids (maintenance). Anti-TNF-α and anti-IL-6R mAbs were administered to reduce the inflammatory response. Baboons were followed by clinical/laboratory monitoring of immune/coagulation/inflammatory/physiological parameters. At biopsy or euthanasia, the grafts were examined by microscopy. RESULTS: The two GroupA baboons remained healthy with normal renal function >7 and >8 months, respectively, but then developed infectious complications. However, no features of a consumptive coagulopathy, eg, thrombocytopenia and reduction of fibrinogen, or of a protein-losing nephropathy were observed. There was no evidence of an elicited anti-pig antibody response, and histology of biopsies taken at approximately 4, 6, and 7 months and at necropsy showed no significant abnormalities. In contrast, both GroupB baboons developed features of a consumptive coagulopathy and required euthanasia on day 12. CONCLUSIONS: The combination of (i) a graft from a specific six-gene genetically modified pig, (ii) an effective immunosuppressive regimen, and (iii) anti-inflammatory therapy prevented immune injury, a protein-losing nephropathy, and coagulation dysfunction for >7 months. Although the number of experiments is very limited, our impression is that expression of human endothelial protein C receptor (±CD55) in the graft is important if coagulation dysregulation is to be avoided.


Asunto(s)
Rechazo de Injerto/inmunología , Supervivencia de Injerto/inmunología , Trasplante de Riñón , Riñón/cirugía , Trasplante Heterólogo , Animales , Animales Modificados Genéticamente , Rechazo de Injerto/genética , Supervivencia de Injerto/genética , Humanos , Inmunosupresores/administración & dosificación , Riñón/inmunología , Trasplante de Riñón/métodos , Papio , Porcinos , Trasplante Heterólogo/métodos , Trasplantes/efectos de los fármacos , Trasplantes/inmunología , Factor de Necrosis Tumoral alfa/inmunología
12.
Xenotransplantation ; 24(2)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28258595

RESUMEN

BACKGROUND: Lung xenografts remain susceptible to loss of vascular barrier function within hours in spite of significant incremental advances based on genetic engineering to remove the Gal 1,3-αGal antigen (GalTKO) and express human membrane cofactor protein (hCD46). Natural killer cells rapidly disappear from the blood during perfusion of GalTKO.hCD46 porcine lungs with human blood and presumably are sequestered within the lung vasculature. Here we asked whether porcine expression of the human NK cell inhibitory ligand HLA-E and ß2 microglobulin inhibits GalTKO.hCD46 pig cell injury or prolongs lung function in two preclinical perfusion models. METHODS: Lungs from pigs modified to express GalTKO.hCD46 (n=37) and GalTKO.hCD46.HLA-E (n=5) were harvested and perfused with human blood until failure or elective termination at 4 hours. Airway pressures and pulmonary artery hemodynamics were recorded in real time. Blood samples were also collected throughout the experiment for analysis. Porcine aortic endothelial cells (PAECs) from each genotype were cultured in monolayers in microfluidic channels and used in fluorescent cytotoxicity assays using human NK cells. RESULTS: HLA-E expression on GalTKO.hCD46 PAECs was associated with significantly decreased antibody-dependent and antibody-independent NK-mediated cytotoxicity under in vitro conditions simulating physiologic shear stress. Relative to GalTKO.hCD46 pig lungs perfused with human blood on an ex vivo platform, additional expression of HLA-E increased median lung survival (>4 hours, vs 162 minutes, P=.012), and was associated with attenuated rise in pulmonary vascular resistance, and decreased platelet activation and histamine elaboration. As expected, HLA-E expression was not associated with a significant difference in NK cell adhesion to endothelial cells in vitro, or NK cell and neutrophil sequestration during organ perfusion. CONCLUSIONS: We conclude human NK cell activation contributes significantly to GalTKO.hCD46 pig endothelial injury and lung inflammation and show that expression of HLA-E is associated with physiologically meaningful protection of GalTKO.hCD46 cells and organs exposed to human blood.


Asunto(s)
Células Endoteliales/inmunología , Supervivencia de Injerto/inmunología , Antígenos HLA/inmunología , Xenoinjertos/inmunología , Leucocitos/inmunología , Lesión Pulmonar/terapia , Proteína Cofactora de Membrana/inmunología , Animales , Animales Modificados Genéticamente , Citotoxicidad Inmunológica/inmunología , Galactosiltransferasas/genética , Supervivencia de Injerto/genética , Antígenos HLA/genética , Humanos , Células Asesinas Naturales/inmunología , Lesión Pulmonar/inmunología , Proteína Cofactora de Membrana/genética , Porcinos , Trasplante Heterólogo/métodos
13.
J Pathol ; 238(2): 288-99, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26365762

RESUMEN

There is a critical shortage in the number of deceased human organs that become available for the purposes of clinical transplantation. This problem might be resolved by the transplantation of organs from pigs genetically engineered to protect them from the human immune response. The pathobiological barriers to successful pig organ transplantation in primates include activation of the innate and adaptive immune systems, coagulation dysregulation and inflammation. Genetic engineering of the pig as an organ source has increased the survival of the transplanted pig heart, kidney, islet and corneal graft in non-human primates (NHPs) from minutes to months or occasionally years. Genetic engineering may also contribute to any physiological barriers that might be identified, as well as to reducing the risks of transfer of a potentially infectious micro-organism with the organ. There are now an estimated 40 or more genetic alterations that have been carried out in pigs, with some pigs expressing five or six manipulations. With the new technology now available, it will become increasingly common for a pig to express even more genetic manipulations, and these could be tested in the pig-to-NHP models to assess their efficacy and benefit. It is therefore likely that clinical trials of pig kidney, heart and islet transplantation will become feasible in the near future.


Asunto(s)
Animales Modificados Genéticamente , Ingeniería Genética/métodos , Porcinos/genética , Trasplante Heterólogo/métodos , Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Animales , Antígenos/metabolismo , Investigación Biomédica/métodos , Trastornos de la Coagulación Sanguínea/prevención & control , Ensayos Clínicos como Asunto , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/inmunología , Disacáridos/inmunología , Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Supervivencia de Injerto/genética , Supervivencia de Injerto/inmunología , Humanos , Inmunidad Celular/inmunología , Inflamación/genética , Inflamación/inmunología , Seguridad del Paciente , Primates , Linfocitos T/inmunología , Obtención de Tejidos y Órganos/métodos , Inmunología del Trasplante/fisiología
14.
Xenotransplantation ; 22(1): 70-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25382150

RESUMEN

BACKGROUND: Xenotransplantation of porcine islets can reverse diabetes in non-human primates. The remaining hurdles for clinical application include safe and effective T-cell-directed immunosuppression, but protection against the innate immune system and coagulation dysfunction may be more difficult to achieve. Islet-targeted genetic manipulation of islet-source pigs represents a powerful tool to protect against graft loss. However, whether these genetic alterations would impair islet function is unknown. METHODS: On a background of α1,3-galactosyltransferase gene-knockout (GTKO)/human (h)CD46, additional genes (hCD39, human tissue factor pathway inhibitor, porcine CTLA4-Ig) were inserted in different combinations under an insulin promoter to promote expression in islets (confirmed by immunofluorescence). Seven pigs were tested for baseline and glucose/arginine-challenged levels of glucose, insulin, C-peptide, and glucagon. RESULTS: This preliminary study did not show definite evidence of ß-cell deficiencies, even when three transgenes were expressed under the insulin promoter. Of seven animals, all were normoglycemic at fasting, and five of seven had normal glucose disposal rates after challenge. All animals exhibited insulin, C-peptide, and glucagon responses to both glucose and arginine challenge; however, significant interindividual variation was observed. CONCLUSIONS: Multiple islet-targeted transgenic expression was not associated with an overtly detrimental effect on islet function, suggesting that complex genetic constructs designed for islet protection warrants further testing in islet xenotransplantation models.


Asunto(s)
Abatacept/genética , Antígenos CD/genética , Apirasa/genética , Glucosa/metabolismo , Insulina/genética , Islotes Pancreáticos/metabolismo , Lipoproteínas/genética , Regiones Promotoras Genéticas , Sus scrofa/metabolismo , Abatacept/biosíntesis , Animales , Animales Modificados Genéticamente , Antígenos CD/biosíntesis , Apirasa/biosíntesis , Arginina/farmacología , Glucemia/análisis , Péptido C/metabolismo , Línea Celular , Ayuno/sangre , Fibroblastos , Galactosiltransferasas/deficiencia , Galactosiltransferasas/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Genes Sintéticos , Glucagón/metabolismo , Glucosa/farmacología , Prueba de Tolerancia a la Glucosa , Humanos , Lipoproteínas/biosíntesis , Proteína Cofactora de Membrana/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Porcinos , Transgenes
15.
Xenotransplantation ; 22(2): 102-11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25470239

RESUMEN

BACKGROUND: Genetically modified pigs are a promising potential source of lung xenografts. Ex vivo xenoperfusion is an effective platform for testing the effect of new modifications, but typical experiments are limited by testing of a single genetic intervention and small sample sizes. The purpose of this study was to analyze the individual and aggregate effects of donor genetic modifications on porcine lung xenograft survival and injury in an extensive pig lung xenoperfusion series. METHODS: Data from 157 porcine lung xenoperfusion experiments using otherwise unmodified heparinized human blood were aggregated as either continuous or dichotomous variables. Lungs were wild type in 17 perfusions (11% of the study group), while 31 lungs (20% of the study group) had one genetic modification, 40 lungs (39%) had 2, and 47 lungs (30%) had 3 or more modifications. The primary endpoint was functional lung survival to 4 h of perfusion. Secondary analyses evaluated previously identified markers associated with known lung xenograft injury mechanisms. In addition to comparison among all xenografts grouped by survival status, a subgroup analysis was performed of lungs incorporating the GalTKO.hCD46 genotype. RESULTS: Each increase in the number of genetic modifications was associated with additional prolongation of lung xenograft survival. Lungs that exhibited survival to 4 h generally had reduced platelet activation and thrombin generation. GalTKO and the expression of hCD46, HO-1, hCD55, or hEPCR were associated with improved survival. hTBM, HLA-E, and hCD39 were associated with no significant effect on the primary outcome. CONCLUSION: This meta-analysis of an extensive lung xenotransplantation series demonstrates that increasing the number of genetic modifications targeting known xenogeneic lung injury mechanisms is associated with incremental improvements in lung survival. While more detailed mechanistic studies are needed to explore the relationship between gene expression and pathway-specific injury and explore why some genes apparently exhibit neutral (hTBM, HLA-E) or inconclusive (CD39) effects, GalTKO, hCD46, HO-1, hCD55, and hEPCR modifications were associated with significant lung xenograft protection. This analysis supports the hypothesis that multiple genetic modifications targeting different known mechanisms of xenograft injury will be required to optimize lung xenograft survival.


Asunto(s)
Animales Modificados Genéticamente/inmunología , Xenoinjertos/inmunología , Trasplante de Pulmón/métodos , Sus scrofa/genética , Sus scrofa/inmunología , Trasplante Heterólogo/métodos , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos Heterófilos/genética , Sangre/inmunología , Receptor de Proteína C Endotelial , Galactosiltransferasas/deficiencia , Galactosiltransferasas/genética , Galactosiltransferasas/inmunología , Técnicas de Inactivación de Genes , Supervivencia de Injerto/genética , Supervivencia de Injerto/inmunología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/inmunología , Humanos , Técnicas In Vitro , Trasplante de Pulmón/efectos adversos , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/inmunología , Perfusión , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Trasplante Heterólogo/efectos adversos
16.
Xenotransplantation ; 22(4): 302-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26130164

RESUMEN

The longest survival of a non-human primate with a life-supporting kidney graft to date has been 90 days, although graft survival > 30 days has been unusual. A baboon received a kidney graft from an α-1,3-galactosyltransferase gene-knockout pig transgenic for two human complement-regulatory proteins and three human coagulation-regulatory proteins (although only one was expressed in the kidney). Immunosuppressive therapy was with ATG+anti-CD20mAb (induction) and anti-CD40mAb+rapamycin+corticosteroids (maintenance). Anti-TNF-α and anti-IL-6R were administered. The baboon survived 136 days with a generally stable serum creatinine (0.6 to 1.6 mg/dl) until termination. No features of a consumptive coagulopathy (e.g., thrombocytopenia, decreased fibrinogen) or of a protein-losing nephropathy were observed. There was no evidence of an elicited anti-pig antibody response. Death was from septic shock (Myroides spp). Histology of a biopsy on day 103 was normal, but by day 136, the kidney showed features of glomerular enlargement, thrombi, and mesangial expansion. The combination of (i) a graft from a specific genetically engineered pig, (ii) an effective immunosuppressive regimen, and (iii) anti-inflammatory agents prevented immune injury and a protein-losing nephropathy, and delayed coagulation dysfunction. This outcome encourages us that clinical renal xenotransplantation may become a reality.


Asunto(s)
Trasplante de Riñón/métodos , Trasplante Heterólogo/métodos , Animales , Animales Modificados Genéticamente , Antígenos Heterófilos/genética , Proteínas del Sistema Complemento/genética , Galactosiltransferasas/deficiencia , Galactosiltransferasas/genética , Galactosiltransferasas/inmunología , Técnicas de Inactivación de Genes , Ingeniería Genética , Supervivencia de Injerto/inmunología , Humanos , Inmunosupresores/administración & dosificación , Riñón/inmunología , Riñón/patología , Trasplante de Riñón/efectos adversos , Papio , Porcinos , Factores de Tiempo , Trasplante Heterólogo/efectos adversos
17.
Xenotransplantation ; 22(3): 211-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25847282

RESUMEN

BACKGROUND: Three costimulation blockade-based regimens have been explored after transplantation of hearts from pigs of varying genetic backgrounds to determine whether CTLA4-Ig (abatacept) or anti-CD40mAb+CTLA4-Ig (belatacept) can successfully replace anti-CD154mAb. METHODS: All pigs were on an α1,3-galactosyltransferase gene-knockout/CD46 transgenic (GTKO.CD46) background. Hearts transplanted into Group A baboons (n=4) expressed additional CD55, and those into Group B (n=3) expressed human thrombomodulin (TBM). Immunosuppression included anti-thymocyte globulin with anti-CD154mAb (Regimen 1: n=2) or abatacept (Regimen 2: n=2) or anti-CD40mAb+belatacept (Regimen 3: n=2). Regimens 1 and 2 included induction anti-CD20mAb and continuous heparin. One further baboon in Group B (B16311) received a modified Regimen 1. Baboons were followed by clinical/laboratory monitoring of immune/coagulation parameters. At biopsy, graft failure, or euthanasia, the graft was examined by microscopy. RESULTS: Group A baboons survived 15 to 33 days, whereas Group B survived 52, 99, and 130 days, respectively. Thrombocytopenia and reduction in fibrinogen occurred within 21 days in Group A, suggesting thrombotic microangiopathy (TM), confirmed by histopathology. In Group B, with follow-up for >4 m, areas of myofiber degeneration and scarring were seen in two hearts at necropsy. A T-cell response was documented only in baboons receiving Regimen 2. CONCLUSIONS: The combination of anti-CD40mAb+belatacept proved effective in preventing a T-cell response. The expression of TBM prevented thrombocytopenia and may possibly delay the development of TM and/or consumptive coagulopathy.


Asunto(s)
Supervivencia de Injerto/efectos de los fármacos , Trasplante de Corazón , Inmunosupresores/farmacología , Trasplante Heterólogo , Animales , Animales Modificados Genéticamente , Rechazo de Injerto/prevención & control , Supervivencia de Injerto/inmunología , Corazón/efectos de los fármacos , Trasplante de Corazón/métodos , Humanos , Papio , Porcinos , Trombomodulina/genética , Trombomodulina/metabolismo
18.
Xenotransplantation ; 21(1): 72-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24188473

RESUMEN

BACKGROUND: Coagulation disorders remain barriers to successful pig-to-primate organ xenotransplantation. In vitro, we investigated the impact of pig genetic modifications on human platelet aggregation in response to pig aortic endothelial cells (pAEC). METHODS: In comparison to human (h)AEC and wild-type (WT) pAEC, the expression of human complement- (CD46, CD55) or coagulation (thrombomodulin [TBM], endothelial protein C receptor [EPCR]) -regulatory proteins on pAEC from WT or α1,3-galactosyltransferase gene-knockout (GTKO) pigs was studied by flow cytometry. Using platelet-aggregometry, human whole blood platelet aggregation was evaluated after co-incubation with various AEC. Further, the inhibitory effect on aggregation of heparin, low molecular weight heparin, and hirudin was assessed. RESULTS: Heparin, low molecular weight heparin and hirudin almost completely prevented platelet aggregation induced by WT pAEC. The level of expression of human CD46, CD55, TBM and EPCR on pAEC was comparable to that on hAEC. Platelet aggregation induced by all genetically modified pAEC was significantly less (P < 0.05) than that by WT pAEC (which was 54%). GTKO/CD46/TBM pAEC induced the least platelet aggregation (27%)-a reduction of almost 50%-but this remained significantly greater (P < 0.01) than aggregation induced by hAEC (4%). There was significant positive correlation between reduction of aggregation and TBM or EPCR expression on pAEC (r = 0.89 and r = 0.86, respectively; P < 0.05). Platelet aggregation induced by GTKO/CD46/TBM pAEC in the presence of hirudin (1 IU/ml) was comparable to platelet aggregation induced by hAEC. CONCLUSIONS: Genetic modification of pAEC is associated with significant reduction of human platelet aggregation in vitro. With concomitant thrombin inhibition, platelet aggregation was comparable to that stimulated by hAEC.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Galactosiltransferasas/genética , Agregación Plaquetaria/efectos de los fármacos , Trombina/farmacología , Trasplante Heterólogo , Animales , Animales Modificados Genéticamente , Coagulación Sanguínea/genética , Plaquetas/inmunología , Técnicas de Inactivación de Genes , Humanos , Sus scrofa , Porcinos
19.
Immunology ; 140(1): 39-46, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23566228

RESUMEN

Swine leucocyte antigen (SLA) class II molecules on porcine (p) cells play a crucial role in xenotransplantation as activators of recipient human CD4(+) T cells. A human dominant-negative mutant class II transactivator (CIITA-DN) transgene under a CAG promoter with an endothelium-specific Tie2 enhancer was constructed. CIITA-DN transgenic pigs were produced by nuclear transfer/embryo transfer. CIITA-DN pig cells were evaluated for expression of SLA class II with/without activation, and the human CD4(+) T-cell response to cells from CIITA-DN and wild-type (WT) pigs was compared. Lymphocyte subset numbers and T-cell function in CIITA-DN pigs were compared with those in WT pigs. The expression of SLA class II on antigen-presenting cells from CIITA-DN pigs was significantly reduced (40-50% reduction compared with WT; P < 0·01), and was completely suppressed on aortic endothelial cells (AECs) even after activation (100% suppression; P < 0·01). The human CD4(+) T-cell response to CIITA-DN pAECs was significantly weaker than to WT pAECs (60-80% suppression; P < 0·01). Although there was a significantly lower frequency of CD4(+) cells in the PBMCs from CIITA-DN (20%) than from WT (30%) pigs (P < 0·01), T-cell proliferation was similar, suggesting no significant immunological compromise. Organs and cells from CIITA-DN pigs should be partially protected from the human cellular immune response.


Asunto(s)
Genes MHC Clase II , Antígenos de Histocompatibilidad Clase II/genética , Proteínas Nucleares/genética , Sus scrofa/genética , Sus scrofa/inmunología , Transactivadores/genética , Animales , Animales Modificados Genéticamente , Antígenos Heterófilos/genética , Linfocitos T CD4-Positivos/inmunología , Expresión Génica , Antígenos de Histocompatibilidad Clase I , Humanos , Activación de Linfocitos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trasplante Heterólogo
20.
Xenotransplantation ; 19(3): 144-58, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22702466

RESUMEN

Barriers to successful lung xenotransplantation appear to be even greater than for other organs. This difficulty may be related to several macro anatomic factors, such as the uniquely fragile lung parenchyma and associated blood supply that results in heightened vulnerability of graft function to segmental or lobar airway flooding caused by loss of vascular integrity (also applicable to allotransplants). There are also micro-anatomic considerations, such as the presence of large numbers of resident inflammatory cells, such as pulmonary intravascular macrophages and natural killer (NK) T cells, and the high levels of von Willebrand factor (vWF) associated with the microvasculature. We have considered what developments would be necessary to allow successful clinical lung xenotransplantation. We suggest this will only be achieved by multiple genetic modifications of the organ-source pig, in particular to render the vasculature resistant to thrombosis. The major problems that require to be overcome are multiple and include (i) the innate immune response (antibody, complement, donor pulmonary and recipient macrophages, monocytes, neutrophils, and NK cells), (ii) the adaptive immune response (T and B cells), (iii) coagulation dysregulation, and (iv) an inflammatory response (e.g., TNF-α, IL-6, HMGB1, C-reactive protein). We propose that the genetic manipulation required to provide normal thromboregulation alone may include the introduction of genes for human thrombomodulin/endothelial protein C-receptor, and/or tissue factor pathway inhibitor, and/or CD39/CD73; the problem of pig vWF may also need to be addressed. It would appear that exploration of every available therapeutic path will be required if lung xenotransplantation is to be successful. To initiate a clinical trial of lung xenotransplantation, even as a bridge to allotransplantation (with a realistic possibility of survival long enough for a human lung allograft to be obtained), significant advances and much experimental work will be required. Nevertheless, with the steadily increasing developments in techniques of genetic engineering of pigs, we are optimistic that the goal of successful clinical lung xenotransplantation can be achieved within the foreseeable future. The optimistic view would be that if experimental pig lung xenotransplantation could be successfully managed, it is likely that clinical application of this and all other forms of xenotransplantation would become more feasible.


Asunto(s)
Ingeniería Genética/tendencias , Inmunomodulación/genética , Trasplante de Pulmón/métodos , Trasplante Heterólogo/métodos , Animales , Humanos , Trasplante de Pulmón/inmunología , Trasplante de Pulmón/tendencias , Porcinos , Donantes de Tejidos , Trasplante Heterólogo/inmunología , Trasplante Heterólogo/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA