Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34728565

RESUMEN

Mucus is a biological gel covering the surface of several tissues and ensuring key biological functions, including as a protective barrier against dehydration, pathogen penetration, or gastric acids. Mucus biological functioning requires a finely tuned balance between solid-like and fluid-like mechanical response, ensured by reversible bonds between mucins, the glycoproteins that form the gel. In living organisms, mucus is subject to various kinds of mechanical stresses, e.g., due to osmosis, bacterial penetration, coughing, and gastric peristalsis. However, our knowledge of the effects of stress on mucus is still rudimentary and mostly limited to macroscopic rheological measurements, with no insight into the relevant microscopic mechanisms. Here, we run mechanical tests simultaneously to measurements of the microscopic dynamics of pig gastric mucus. Strikingly, we find that a modest shear stress, within the macroscopic rheological linear regime, dramatically enhances mucus reorganization at the microscopic level, as signaled by a transient acceleration of the microscopic dynamics, by up to 2 orders of magnitude. We rationalize these findings by proposing a simple, yet general, model for the dynamics of physical gels under strain and validate its assumptions through numerical simulations of spring networks. These results shed light on the rearrangement dynamics of mucus at the microscopic scale, with potential implications in phenomena ranging from mucus clearance to bacterial and drug penetration.


Asunto(s)
Modelos Teóricos , Moco/fisiología , Animales , Módulo de Elasticidad , Reología , Estrés Mecánico , Porcinos , Sustancias Viscoelásticas
2.
Langmuir ; 27(9): 5562-73, 2011 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-21476528

RESUMEN

In this article, we present a general overview of the organization of colloidal charged clay particles in aqueous suspension by studying different natural samples with different structural charges and charge locations. Small-angle X-ray scattering experiments (SAXS) are first used to derive swelling laws that demonstrate the almost perfect exfoliation of clay sheets in suspension. Using a simple approach based on geometrical constraints, we show that these swelling laws can be fully modeled on the basis of morphological parameters only. The validity of this approach was further extended to other clay data from the literature, in particular, synthetic Laponite. For all of the investigated samples, experimental osmotic pressures can be properly described by a Poisson-Boltzmann approach for ionic strength up to 10(-3) M, which reveals that these systems are dominated by repulsive electrostatic interactions. However, a detailed analysis of the Poisson-Boltzmann treatment shows differences in the repulsive potential strength that are not directly linked to the structural charge of the minerals but rather to the charge location in the structure for tetrahedrally charged clays (beidellite and nontronites) undergoing stronger electrostatic repulsions than octahedrally charged samples (montmorillonites, laponite). Only minerals subjected to the strongest electrostatic repulsions present a true isotropic to nematic phase transition in their phase diagrams. The influence of ionic repulsions on the local order of clay platelets was then analyzed through a detailed investigation of the structure factors of the various clay samples. It appears that stronger electrostatic repulsions improve the liquidlike positional local order.


Asunto(s)
Silicatos de Aluminio/química , Productos Biológicos/química , Electricidad Estática , Agua/química , Arcilla , Peso Molecular , Presión Osmótica , Dispersión del Ángulo Pequeño , Silicatos/química , Suspensiones , Difracción de Rayos X
3.
Phys Rev E ; 97(4-1): 040601, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29758608

RESUMEN

We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τ_{α} of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τ_{α} on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τ_{α} depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.

4.
J Phys Chem B ; 118(18): 4913-9, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24758198

RESUMEN

In this article, we present a study of the liquid crystal phase behavior of mixed suspensions of the natural smectite clay mineral beidellite and nonadsorbing colloidal silica particles. While virtually all smectite clays dispersed in water form gels at very low concentrations, beidellite displays a first order isotropic-nematic phase transition before gel formation (J. Phys. Chem. B, 2009, 113, 15858-15869). The addition of silica nanospheres shifts the concentrations of the coexisting isotropic and nematic phases to slightly higher values while at the same time markedly accelerating the phase separation process. Furthermore, beidellite suspensions at volume fractions above the isotropic-nematic phase separation, trapped in a kinetically arrested gel state, liquefy on the addition of silica nanospheres and proceed to isotropic-nematic phase separation. Using small-angle X-ray scattering (SAXS), we probe the structural changes caused by the addition of the silica nanospheres, and we relate the modification of the phase transition kinetics to the change of the rheological properties.

5.
ACS Appl Mater Interfaces ; 4(8): 4296-301, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22833688

RESUMEN

Clay/polymer nanocomposites have recently raised much interest because of their widespread industrial applications. Nevertheless, controlling both clay platelet exfoliation and orientation during polymerization still remains challenging. Herein, we report the elaboration of clay/polymer nanocomposite hydrogels from aqueous suspensions of natural swelling clays submitted to high-frequency a.c. electric fields. X-ray scattering experiments have confirmed the complete exfoliation of the clay sheets in the polymer matrix, even after polymerization. Moreover, polarized light microscopy shows that the clay platelets were perfectly oriented by the electric field and that this field-induced alignment was frozen in by in situ photopolymerization. This procedure allowed us to not only produce uniformly aligned samples but also pattern platelet orientation, at length scales down to 20 µm. This straightforward and cheap nanocomposite patterning technique can be easily extended to a wide range of natural or synthetic inorganic anisotropic particles.

6.
J Phys Chem B ; 116(45): 13516-24, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23106195

RESUMEN

Aqueous colloidal suspensions of clay platelets display a sol/gel transition that is not yet understood. Depending on the nature of the clay, liquid-crystalline behavior may also be observed. For example, the suspensions of beidellite display a nematic phase whereas those of montmorillonite do not. Both beidellite and montmorillonite have a "TOT" structure but the structural electric charge is located in the tetrahedral layer for the former and in the octahedral layer for the latter. We built a setup to perform SAXS experiments on complex fluids submitted to an electric field in situ. We found that the fluid nematic phase of beidellite suspensions readily aligns in the field. However, the field had no influence on the gels, showing that the orientational degrees of freedom of the platelets are effectively frozen. Moreover, strong platelet alignment was induced by the field in the isotropic phase of both clays, in a similar way, regardless of their ability to form a nematic phase. This surprising result would suggest that the orientational degrees of freedom are not directly involved in the sol/gel transition. The ability to induce orientational order in the isotropic phase of clay suspensions can be exploited to prepare materials of controlled anisotropy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA