Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Opt Express ; 32(4): 5783-5792, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439296

RESUMEN

Millimeter and terahertz wave imaging has emerged as a powerful tool for applications such as security screening, biomedical imaging, and material analysis. However, intensity images alone are often insufficient for detecting variations in the dielectric constant of a sample, and extraction of material properties without additional phase information requires extensive prior knowledge of the sample. Digital holography provides a means for intensity-only detectors to reconstruct both amplitude and phase images. Here we utilize a commercially available source and detector array, both operating at room temperature, to perform digital holography in real-time for the first time in the mm-wave band (at 290 GHz). We compare the off-axis and phase-shifting approaches to digital holography and discuss their trade-offs and practical challenges in this regime. Owing to the low pixel count, we find phase-shifting holography to be the most practical and high fidelity approach for such commercial mm-wave cameras even under real-time operational requirements.

2.
Proc Natl Acad Sci U S A ; 115(15): 3800-3803, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581257

RESUMEN

The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes "negative." In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at [Formula: see text]100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the "negative frequency" regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation.

3.
Opt Express ; 28(23): 34692-34705, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182931

RESUMEN

The spatial information carried by light is scrambled when it propagates through a scattering medium, such as frosted glass, biological tissue, turbulent air, or multimode optical fibres. Digital optical phase conjugation (DOPC) is a technique that 'pre-aberrates' an illuminating wavefront to compensate for scatterer induced distortion. DOPC systems act as phase-conjugate mirrors: they require a camera to holographically record a distorted wavefront emanating from the scatterer and a spatial light modulator (SLM) to synthesize a phase conjugate of the measured wavefront, which is sent back through the scatterer thus creating a time-reversed copy of the original optical field. High-fidelity DOPC can be technically challenging to achieve as it typically requires pixel-perfect alignment between the camera and SLM. Here we describe a DOPC system in which the normally stringent alignment criteria are relaxed. In our system the SLM and camera are placed in-line in the same optical path from the sample, and the SLM is used in an off-axis configuration. This means high-precision alignment can be achieved by measurement of the transmission matrix (TM) mapping optical fields from the SLM to the camera and vice-versa, irrespective of their relative position. The TM also absorbs and removes other aberrations in the optical system, such as the curvature of the SLM and camera chips. Using our system we demonstrate high-fidelity focussing of light through two ground glass diffusers with a peak-intensity to mean-background ratio of ∼700. We provide a step-by-step guide detailing how to align this system and discuss the trade-offs with alternative configurations. We also describe how our setup can be used as a 'single-pixel camera' based DOPC system, offering potential for DOPC at wavelengths in which cameras are not available or are prohibitively expensive.

4.
Opt Express ; 27(7): 9829-9837, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045141

RESUMEN

Single-pixel cameras reconstruct images from a stream of spatial projection measurements recorded with a single-element detector, which itself has no spatial resolution. This enables the creation of imaging systems that can take advantage of the ultra-fast response times of single-element detectors. Here we present a single-pixel camera with a temporal resolution of 200 ps in the visible and short-wave infrared wavelengths, used here to study the transit time of distinct spatial modes transmitted through few-mode and orbital angular momentum mode conserving optical fiber. Our technique represents a way to study the spatial and temporal characteristics of light propagation in multimode optical fibers, which may find use in optical fiber design and communications.

5.
Opt Express ; 25(21): 25079-25089, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29041179

RESUMEN

Spatial structuring of the intensity, phase and polarisation of light is useful in a wide variety of modern applications, from microscopy to optical communications. This shaping is most commonly achieved using liquid crystal spatial light modulators (LC-SLMs). However, the inherent chromatic dispersion of LC-SLMs when used as diffractive elements presents a challenge to the extension of such techniques from monochromatic to broadband light. In this work we demonstrate a method of generating broadband vector beams with dynamically tunable intensity, phase and polarisation over a bandwidth of 100 nm. We use our system to generate radially and azimuthally polarised vector vortex beams carrying orbital angular momentum, and beams whose polarisation states span the majority of the Poincaré sphere. We characterise these broadband vector beams using spatially and spectrally resolved Stokes measurements, and detail the technical and fundamental limitations of our technique, including beam generation fidelity and efficiency. The broadband vector beam shaper that we demonstrate here may find use in applications such as ultrafast beam shaping and white light microscopy.

6.
Opt Express ; 25(24): 29874-29884, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29221023

RESUMEN

Digital micro-mirror devices (DMDs) have recently emerged as practical spatial light modulators (SLMs) for applications in photonics, primarily due to their modulation rates, which exceed by several orders of magnitude those of the already well-established nematic liquid crystal (LC)-based SLMs. This, however, comes at the expense of limited modulation depth and diffraction efficiency. Here we compare the beam-shaping fidelity of both technologies when applied to light control in complex environments, including an aberrated optical system, a highly scattering layer and a multimode optical fibre. We show that, despite their binary amplitude-only modulation, DMDs are capable of higher beam-shaping fidelity compared to LC-SLMs in all considered regimes.

7.
Opt Express ; 25(4): 2998-3005, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241517

RESUMEN

We demonstrate a camera which can image methane gas at video rates, using only a single-pixel detector and structured illumination. The light source is an infrared laser diode operating at 1.651µm tuned to an absorption line of methane gas. The light is structured using an addressable micromirror array to pattern the laser output with a sequence of Hadamard masks. The resulting backscattered light is recorded using a single-pixel InGaAs detector which provides a measure of the correlation between the projected patterns and the gas distribution in the scene. Knowledge of this correlation and the patterns allows an image to be reconstructed of the gas in the scene. For the application of locating gas leaks the frame rate of the camera is of primary importance, which in this case is inversely proportional to the square of the linear resolution. Here we demonstrate gas imaging at ~25 fps while using 256 mask patterns (corresponding to an image resolution of 16×16). To aid the task of locating the source of the gas emission, we overlay an upsampled and smoothed image of the low-resolution gas image onto a high-resolution color image of the scene, recorded using a standard CMOS camera. We demonstrate for an illumination of only 5mW across the field-of-view imaging of a methane gas leak of ~0.2 litres/minute from a distance of ~1 metre.

8.
Opt Express ; 24(25): 29269-29282, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27958587

RESUMEN

The dynamic spatial control of light fields is essential to a range of applications, from microscopy to optical micro-manipulation and communications. Here we describe the use of a single digital micro-mirror device (DMD) to generate and rapidly switch vector beams with spatially controllable intensity, phase and polarisation. We demonstrate local spatial control over linear, elliptical and circular polarisation, allowing the generation of radially and azimuthally polarised beams and Poincaré beams. All of these can be switched at rates of up to 4kHz (limited only by our DMD model), a rate ∼2 orders of magnitude faster than the switching speeds of typical phase-only spatial light modulators. The polarisation state of the generated beams is characterised with spatially resolved Stokes measurements. We also describe detail of technical considerations when using a DMD, and quantify the mode capacity and efficiency of the beam generation. The high-speed switching capabilities of this method will be particularly useful for the control of light propagation through complex media such as multimode fibers, where rapid spatial modulation of intensity, phase and polarisation is required.

9.
Opt Express ; 24(10): 10476-85, 2016 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-27409871

RESUMEN

Single-pixel cameras provide a means to perform imaging at wavelengths where pixelated detector arrays are expensive or limited. The image is reconstructed from measurements of the correlation between the scene and a series of masks. Although there has been much research in the field in recent years, the fact that the signal-to-noise ratio (SNR) scales poorly with increasing resolution has been one of the main limitations prohibiting the uptake of such systems. Microscanning is a technique that provides a final higher resolution image by combining multiple images of a lower resolution. Each of these low resolution images is subject to a sub-pixel sized lateral displacement. In this work we apply a digital microscanning approach to an infrared single-pixel camera. Our approach requires no additional hardware, but is achieved simply by using a modified set of masks. Compared to the conventional Hadamard based single-pixel imaging scheme, our proposed framework improves the SNR of reconstructed images by ∼ 50 % for the same acquisition time. In addition, this strategy also provides access to a stream of low-resolution 'preview' images throughout each high-resolution acquisition.

10.
Sci Adv ; 10(27): eadi7792, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968347

RESUMEN

Optical tweezers enable noncontact trapping of microscale objects using light. It is not known how tightly it is possible to three-dimensionally (3D) trap microparticles with a given photon budget. Reaching this elusive limit would enable maximally stiff particle trapping for precision measurements on the nanoscale and photon-efficient tweezing of light-sensitive objects. Here, we customize the shape of light fields to suit specific particles, with the aim of optimizing trapping stiffness in 3D. We show, theoretically, that the confinement volume of microspheres held in sculpted optical traps can be reduced by one to two orders of magnitude. Experimentally, we use a wavefront shaping-inspired strategy to passively suppress the Brownian fluctuations of microspheres in every direction concurrently, demonstrating order-of-magnitude reductions in their confinement volumes. Our work paves the way toward the fundamental limits of optical control over the mesoscopic realm.

11.
Nat Commun ; 12(1): 3751, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145228

RESUMEN

When light propagates through opaque material, the spatial information it holds becomes scrambled, but not necessarily lost. Two classes of techniques have emerged to recover this information: methods relying on optical memory effects, and transmission matrix (TM) approaches. Here we develop a general framework describing the nature of memory effects in structures of arbitrary geometry. We show how this framework, when combined with wavefront shaping driven by feedback from a guide-star, enables estimation of the TM of any such system. This highlights that guide-star assisted imaging is possible regardless of the type of memory effect a scatterer exhibits. We apply this concept to multimode fibres (MMFs) and identify a 'quasi-radial' memory effect. This allows the TM of an MMF to be approximated from only one end - an important step for micro-endoscopy. Our work broadens the applications of memory effects to a range of novel imaging and optical communication scenarios.

12.
Science ; 374(6573): 1395-1399, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34882470

RESUMEN

Time-of-flight three-dimensional (3D) imaging has applications that range from industrial inspection to motion tracking. Depth is recovered by measuring the round-trip flight time of laser pulses, typically using collection optics of several centimeters in diameter. We demonstrate near­video-rate 3D imaging through multimode fibers with a total aperture of several hundred micrometers. We implement aberration correction using wavefront shaping synchronized with a pulsed source and scan the scene at ~23,000 points per second. We image moving objects several meters beyond the end of an ~40-centimeters-long fiber of 50-micrometer core diameter at frame rates of ~5 hertz. Our work grants far-field depth-resolving capabilities to ultrathin microendoscopes, which we expect to have applications to clinical and remote inspection scenarios.

13.
Light Sci Appl ; 10(1): 88, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883544

RESUMEN

The measurement of the optical transmission matrix (TM) of an opaque material is an advanced form of space-variant aberration correction. Beyond imaging, TM-based methods are emerging in a range of fields, including optical communications, micro-manipulation, and computing. In many cases, the TM is very sensitive to perturbations in the configuration of the scattering medium it represents. Therefore, applications often require an up-to-the-minute characterisation of the fragile TM, typically entailing hundreds to thousands of probe measurements. Here, we explore how these measurement requirements can be relaxed using the framework of compressive sensing, in which the incorporation of prior information enables accurate estimation from fewer measurements than the dimensionality of the TM we aim to reconstruct. Examples of such priors include knowledge of a memory effect linking the input and output fields, an approximate model of the optical system, or a recent but degraded TM measurement. We demonstrate this concept by reconstructing the full-size TM of a multimode fibre supporting 754 modes at compression ratios down to ∼5% with good fidelity. We show that in this case, imaging is still possible using TMs reconstructed at compression ratios down to ∼1% (eight probe measurements). This compressive TM sampling strategy is quite general and may be applied to a variety of other scattering samples, including diffusers, thin layers of tissue, fibre optics of any refractive profile, and reflections from opaque walls. These approaches offer a route towards the measurement of high-dimensional TMs either quickly or with access to limited numbers of measurements.

14.
Nat Commun ; 11(1): 5217, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060608

RESUMEN

The thin and flexible nature of optical fibres often makes them the ideal technology to view biological processes in-vivo, but current microendoscopic approaches are limited in spatial resolution. Here, we demonstrate a route to high resolution microendoscopy using a multicore fibre (MCF) with an adiabatic multimode-to-single-mode "photonic lantern" transition formed at the distal end by tapering. We show that distinct multimode patterns of light can be projected from the output of the lantern by individually exciting the single-mode MCF cores, and that these patterns are highly stable to fibre movement. This capability is then exploited to demonstrate a form of single-pixel imaging, where a single pixel detector is used to detect the fraction of light transmitted through the object for each multimode pattern. A custom computational imaging algorithm we call SARA-COIL is used to reconstruct the object using only the pre-measured multimode patterns themselves and the detector signals.

15.
Nat Commun ; 10(1): 1215, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872572

RESUMEN

Optical tweezers are a highly versatile tool for exploration of the mesoscopic world, permitting non-contact manipulation of nanoscale objects. However, direct illumination with intense lasers restricts their use with live biological specimens, and limits the types of materials that can be trapped. Here we demonstrate an indirect optical trapping platform which circumvents these limitations by using hydrodynamic forces to exert nanoscale-precision control over aqueous particles, without directly illuminating them. Our concept is based on optically actuated micro-robotics: closed-loop control enables highly localised flow-fields to be sculpted by precisely piloting the motion of optically-trapped micro-rotors. We demonstrate 2D trapping of absorbing particles which cannot be directly optically trapped, stabilise the position and orientation of yeast cells, and demonstrate independent control over multiple objects simultaneously. Our work expands the capabilities of optical tweezers platforms, and represents a new paradigm for manipulation of aqueous mesoscopic systems.

16.
Sci Adv ; 3(4): e1601782, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28439538

RESUMEN

In contrast to conventional multipixel cameras, single-pixel cameras capture images using a single detector that measures the correlations between the scene and a set of patterns. However, these systems typically exhibit low frame rates, because to fully sample a scene in this way requires at least the same number of correlation measurements as the number of pixels in the reconstructed image. To mitigate this, a range of compressive sensing techniques have been developed which use a priori knowledge to reconstruct images from an undersampled measurement set. Here, we take a different approach and adopt a strategy inspired by the foveated vision found in the animal kingdom-a framework that exploits the spatiotemporal redundancy of many dynamic scenes. In our system, a high-resolution foveal region tracks motion within the scene, yet unlike a simple zoom, every frame delivers new spatial information from across the entire field of view. This strategy rapidly records the detail of quickly changing features in the scene while simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This architecture provides video streams in which both the resolution and exposure time spatially vary and adapt dynamically in response to the evolution of the scene. The degree of local frame rate enhancement is scene-dependent, but here, we demonstrate a factor of 4, thereby helping to mitigate one of the main drawbacks of single-pixel imaging techniques. The methods described here complement existing compressive sensing approaches and may be applied to enhance computational imagers that rely on sequential correlation measurements.

17.
J Neurotrauma ; 33(10): 954-62, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26414451

RESUMEN

Literature examining magnetic resonance imaging (MRI) in acute spinal cord injury (SCI) has focused on cervical SCI. Reproducible systems have been developed for MRI-based grading; however, it is unclear how they apply to thoracic SCI. Our hypothesis is that MRI measures will group as coherent multivariate principal component (PC) ensembles, and that distinct PCs and individual variables will show discriminant validity for predicting early impairment in thoracic SCI. We undertook a retrospective cohort study of 25 patients with acute thoracic SCI who underwent MRI on admission and had American Spinal Injury Association Impairment Scale (AIS) assessment at hospital discharge. Imaging variables of axial grade, sagittal grade, length of injury, thoracolumbar injury classification system (TLICS), maximum canal compromise (MCC), and maximum spinal cord compression (MSCC) were collected. We performed an analytical workflow to detect multivariate PC patterns followed by explicit hypothesis testing to predict AIS at discharge. All imaging variables loaded positively on PC1 (64.3% of variance), which was highly related to AIS at discharge. MCC, MSCC, and TLICS also loaded positively on PC2 (22.7% of variance), while variables concerning cord signal abnormality loaded negatively on PC2. PC2 was highly related to the patient undergoing surgical decompression. Variables of signal abnormality were all negatively correlated with AIS at discharge with the highest level of correlation for axial grade as assessed with the Brain and Spinal Injury Center (BASIC) score. A multiple variable model identified BASIC as the only statistically significant predictor of AIS at discharge, signifying that BASIC best captured the variance in AIS within our study population. Our study provides evidence of convergent validity, construct validity, and clinical predictive validity for the sampled MRI measures of SCI when applied in acute thoracic and thoracolumbar SCI.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Índice de Severidad de la Enfermedad , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/fisiopatología , Adulto , Femenino , Humanos , Vértebras Lumbares , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Análisis de Componente Principal , Pronóstico , Reproducibilidad de los Resultados , Vértebras Torácicas , Adulto Joven
18.
J Neurosurg ; 121(6): 1508-13, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25259565

RESUMEN

OBJECT: In this report, the authors describe the pathological changes in the human trigeminal nerve after Gamma Knife radiosurgery. METHODS: Three trigeminal nerves of patients with multiple sclerosis (MS)-related trigeminal neuralgia (MSTN) after Gamma Knife radiosurgery and other ablative procedures were examined by a neuropathologist. These cases were compared with 3 patients with typical TN who underwent partial surgical rhizotomy following recurrent symptoms after gasserian injury procedures, as well as with autopsy specimens from patients with and without MSTN. RESULTS: The three irradiated MS-TN specimens exhibited axon loss, demyelination, myelin debris, and fibrosis. Mild lymphocytic infiltrate was present in all 3 samples from MS-TN patients. The nonirradiated trigeminal nerve samples were generally well myelinated with rare degenerating axons. The microscopic findings in trigeminal nerve autopsy specimens were normal in patients without TN, with MS but not TN, and MS-TN. CONCLUSIONS: The inflammation observed in MS-TN specimens collected following Gamma Knife radiosurgery has not previously been described in the literature. These data provide new insight into the changes that occur in trigeminal nerve following stereotactic radiosurgery.


Asunto(s)
Esclerosis Múltiple/complicaciones , Radiocirugia/métodos , Rizotomía/métodos , Neuralgia del Trigémino/etiología , Neuralgia del Trigémino/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Degeneración Nerviosa/etiología , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/cirugía , Neuritis/tratamiento farmacológico , Neuritis/inmunología , Neuritis/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Neuralgia del Trigémino/inmunología
19.
Nat Commun ; 5: 4856, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25229882

RESUMEN

The ability to rapidly switch between orbital angular momentum modes of light has important implications for future classical and quantum systems. In general, orbital angular momentum beams are generated using free-space bulk optical components where the fastest reconfiguration of such systems is around a millisecond using spatial light modulators. In this work, an extremely compact optical vortex emitter is demonstrated with the ability to actively tune between different orbital angular momentum modes. The emitter is tuned using a single electrically contacted thermo-optical control, maintaining device simplicity and micron scale footprint. On-off keying and orbital angular momentum mode switching are achieved at rates of 10 µs and 20 µs respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA