Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 293(18): 6637-6646, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29535188

RESUMEN

Dystrophin, encoded by the DMD gene, is critical for maintaining plasma membrane integrity during muscle contraction events. Mutations in the DMD gene disrupting the reading frame prevent dystrophin production and result in severe Duchenne muscular dystrophy (DMD); in-frame internal deletions allow production of partly functional internally deleted dystrophin and result in less severe Becker muscular dystrophy (BMD). Many known BMD deletions occur in dystrophin's central domain, generally considered to be a monotonous rod-shaped domain based on the knowledge of spectrin family proteins. However, the effects caused by these deletions, ranging from asymptomatic to severe BMD, argue against the central domain serving only as a featureless scaffold. We undertook structural studies combining small-angle X-ray scattering and molecular modeling in an effort to uncover the structure of the central domain, as dystrophin has been refractory to characterization. We show that this domain appears to be a tortuous and complex filament that is profoundly disorganized by the most severe BMD deletion (loss of exons 45-47). Despite the preservation of large parts of the binding site for neuronal nitric oxide synthase (nNOS) in this deletion, computational approaches failed to recreate the association of dystrophin with nNOS. This observation is in agreement with a strong decrease of nNOS immunolocalization in muscle biopsies, a parameter related to the severity of BMD phenotypes. The structural description of the whole dystrophin central domain we present here is a first necessary step to improve the design of microdystrophin constructs toward the goal of a successful gene therapy for DMD.


Asunto(s)
Distrofina/química , Distrofina/genética , Eliminación de Gen , Distrofia Muscular de Duchenne/genética , Sitios de Unión , Exones , Humanos , Simulación del Acoplamiento Molecular , Distrofia Muscular de Duchenne/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Dominios Proteicos , Sistemas de Lectura , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos X
2.
Hum Mol Genet ; 25(16): 3555-3563, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27378686

RESUMEN

In preclinical models for Duchenne muscular dystrophy, dystrophin restoration during adeno-associated virus (AAV)-U7-mediated exon-skipping therapy was shown to decrease drastically after six months in treated muscles. This decline in efficacy is strongly correlated with the loss of the therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber membranes. To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles were pre-treated with a single dose of the peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma. The PPMO pre-treatment allowed efficient maintenance of AAV genomes in mdx muscles and enhanced the AAV-U7 therapy effect with a ten-fold increase of the protein level after 6 months. PPMO pre-treatment was also beneficial to AAV-mediated gene therapy with transfer of micro-dystrophin cDNA into muscles. Therefore, avoiding vector genome loss after AAV injection by PPMO pre-treatment would allow efficient long-term restoration of dystrophin and the use of lower and thus safer vector doses for Duchenne patients.


Asunto(s)
Distrofina/genética , Terapia Genética , Morfolinos/administración & dosificación , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/administración & dosificación , Animales , Dependovirus/genética , Exones/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Humanos , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Sarcolema/efectos de los fármacos , Sarcolema/patología
3.
Hum Mutat ; 38(2): 152-159, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27790796

RESUMEN

Dent-2 disease and Lowe syndrome are two pathologies caused by mutations in inositol polyphosphate 5-phosphatase OCRL gene. Both conditions share proximal tubulopathy evolving to chronic kidney failure. Lowe syndrome is in addition defined by a bilateral congenital cataract, intellectual disability, and hypotonia. The pathology evolves in two decades to a severe condition with renal complications and a fatal issue. We describe here a proof of principle for a targeted gene therapy on a mutation of the OCRL gene that is associated with Lowe syndrome. The affected patient bears a deep intronic mutation inducing a pseudo-exon inclusion in the mRNA, leading to a OCRL-1 protein loss. An exon-skipping strategy was designed to correct the effect of the mutation in cultured cells. We show that a recombinant U7-modified small RNA efficiently triggered the restoration of normal OCRL expression at mRNA and protein levels in patient's fibroblasts. Moreover, the PI(4,5)P2 accumulation and cellular alterations that are hallmark of OCRL-1 dysfunction were also rescued. Altogether, we provide evidence that the restoration of OCRL-1 protein, even at a reduced level, through RNA-based therapy represents a potential therapeutic approach for patients with OCRL splice mutations.


Asunto(s)
Intrones , Mutación , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Alelos , Empalme Alternativo , Sustitución de Aminoácidos , Preescolar , Activación Enzimática , Exones , Fibroblastos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Imagen Molecular , Síndrome Oculocerebrorrenal/diagnóstico , Fenotipo
4.
Mol Ther ; 22(8): 1423-1433, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24861054

RESUMEN

Myostatin regulates skeletal muscle size via the activin receptor IIB (ActRIIB). However, its effect on muscle energy metabolism and energy-dependent muscle function remains largely unexplored. This question needs to be solved urgently since various therapies for neuromuscular diseases based on blockade of ActRIIB signaling are being developed. Here, we show in mice, that 4-month pharmacological abrogation of ActRIIB signaling by treatment with soluble ActRIIB-Fc triggers extreme muscle fatigability. This is associated with elevated serum lactate levels and a severe metabolic myopathy in the mdx mouse, an animal model of Duchenne muscular dystrophy. Blockade of ActRIIB signaling downregulates porin, a crucial ADP/ATP shuttle between cytosol and mitochondrial matrix leading to a consecutive deficiency of oxidative phosphorylation as measured by in vivo Phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS). Further, ActRIIB blockade reduces muscle capillarization, which further compounds the metabolic stress. We show that ActRIIB regulates key determinants of muscle metabolism, such as Pparß, Pgc1α, and Pdk4 thereby optimizing different components of muscle energy metabolism. In conclusion, ActRIIB signaling endows skeletal muscle with high oxidative capacity and low fatigability. The severe metabolic side effects following ActRIIB blockade caution against deploying this strategy, at least in isolation, for treatment of neuromuscular disorders.


Asunto(s)
Receptores de Activinas Tipo II/antagonistas & inhibidores , Fragmentos Fc de Inmunoglobulinas/farmacología , Músculos/fisiopatología , Distrofia Muscular Animal/fisiopatología , Animales , Línea Celular , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Porinas/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Hum Mol Genet ; 21(15): 3449-60, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22589245

RESUMEN

Duchenne and Becker muscular dystrophies (DMD and BMD) are muscle-wasting diseases caused by mutations in the DMD gene-encoding dystrophin. Usually, out-of-frame deletions give rise to DMD, whereas in-frame deletions result in BMD. BMD patients exhibit a less severe disease because an abnormal but functional dystrophin is produced. This is the rationale for attempts to correct the reading frame by using an exon-skipping strategy. In order to apply this approach to a larger number of patients, a multi-exon skipping strategy of exons 45-55 has been proposed, because it should correct the mRNA reading frame in almost 75% of DMD patients with a deletion. The resulting dystrophin lacks part of the binding site for the neuronal nitric oxide synthase (nNOSµ), which normally binds to spectrin-like repeats 16 and 17 of the dystrophin. Since these domains are encoded by exons 42-45, we investigated the nNOSµ status in muscle biopsies from 12 BMD patients carrying spontaneous deletions spaning exons 45-55. We found a wide spectrum of nNOSµ expression and localization. The strictly cytosolic mislocalization of nNOSµ was associated with the more severe phenotypes. Cytosolic NO production correlated with both hypernitrosylation of the sarcoplasmic reticulum calcium-release-channel ryanodine receptor type-1 (RyR1) and release of calstabin-1, a central hub of Ca(2+) signaling and contraction in muscle. Finally, this study shows that the terminal truncation of the nNOS-binding domain in the 'therapeutic' del45-55 dystrophin is not innocuous, since it can perturb the nNOS-dependent stability of the RyR1/calstabin-1 complex.


Asunto(s)
Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Óxido Nítrico Sintasa de Tipo I/análisis , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Adolescente , Adulto , Niño , Preescolar , Distrofina/genética , Exones , Eliminación de Gen , Humanos , Persona de Mediana Edad , Distrofia Muscular de Duchenne/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Fenotipo , ARN Mensajero/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Eliminación de Secuencia , Proteínas de Unión a Tacrolimus/metabolismo
6.
EMBO J ; 29(3): 643-54, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20033060

RESUMEN

The alpha1S subunit has a dual function in skeletal muscle: it forms the L-type Ca(2+) channel in T-tubules and is the voltage sensor of excitation-contraction coupling at the level of triads. It has been proposed that L-type Ca(2+) channels might also be voltage-gated sensors linked to transcriptional activity controlling differentiation. By using the U7-exon skipping strategy, we have achieved long-lasting downregulation of alpha1S in adult skeletal muscle. Treated muscles underwent massive atrophy while still displaying significant amounts of alpha1S in the tubular system and being not paralysed. This atrophy implicated the autophagy pathway, which was triggered by neuronal nitric oxide synthase redistribution, activation of FoxO3A, upregulation of autophagy-related genes and autophagosome formation. Subcellular investigations showed that this atrophy was correlated with the disappearance of a minor fraction of alpha1S located throughout the sarcolemma. Our results reveal for the first time that this sarcolemmal fraction could have a role in a signalling pathway determining muscle anabolic or catabolic state and might act as a molecular sensor of muscle activity.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Canales de Calcio/fisiología , Morfogénesis/genética , Músculo Esquelético/embriología , Animales , Autofagia/genética , Secuencia de Bases , Canales de Calcio/genética , Canales de Calcio Tipo L/genética , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Fuerza Muscular/genética , Músculo Esquelético/anatomía & histología , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Tamaño de los Órganos/genética , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Distribución Tisular/genética
7.
Med Sci (Paris) ; 39 Hors série n° 1: 47-53, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-37975770

RESUMEN

Sarcopenia is a complex age-related muscular disease affecting 10 to 16 % of people over 65 years old. It is characterized by excessive loss of muscle mass and strength. Despite a plethora of studies aimed at understanding the physiological mechanisms underlying this pathology, the pathophysiology of sarcopenia remains poorly understood. To date, there is no pharmacological treatment for this disease. In this context, our team develop therapeutic approaches based on the GDF5 protein to counteract the loss of muscle mass and function in various pathological conditions, including sarcopenia. After deciphering one of the molecular mechanisms governing GDF5 expression, we have demonstrated the therapeutic potential of this protein in the preservation of muscle mass and strength in aged mice.


Title: GDF5 - Un candidat thérapeutique dans la lutte contre la sarcopénie. Abstract: La sarcopénie est une maladie musculaire complexe liée à l'âge qui affecte entre 10 à 16 % des personnes âgées de plus 65 ans. Elle se caractérise par une perte excessive de la masse musculaire et de la force. Malgré la multitude d'études visant à comprendre les mécanismes physiologiques qui sous-tendent cette pathologie, la physiopathologie de la sarcopénie reste encore mal comprise. A ce jour, il n'existe pas de traitement pharmacologique pour lutter contre cette pathologie. Dans ce contexte, notre équipe développe des approches thérapeutiques basées sur l'utilisation de la protéine GDF5 pour contrecarrer la perte de la masse et de la fonction musculaire dans diverses conditions pathologiques dont la sarcopénie. Après avoir décrypté un des mécanismes moléculaires régulant l'expression du GDF5, nous avons démontré le potentiel thérapeutique de cette protéine dans la préservation de la masse et la force musculaire chez les souris âgées.


Asunto(s)
Sarcopenia , Anciano , Animales , Humanos , Ratones , Factor 5 de Diferenciación de Crecimiento/metabolismo , Músculo Esquelético/patología , Sarcopenia/tratamiento farmacológico , Sarcopenia/genética
8.
Cells ; 12(23)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067102

RESUMEN

Satellite cells (SCs) are adult muscle stem cells that are mobilized when muscle homeostasis is perturbed. Here we show that RhoA in SCs is indispensable to have correct muscle regeneration and hypertrophy. In particular, the absence of RhoA in SCs prevents a correct SC fusion both to other RhoA-deleted SCs (regeneration context) and to growing control myofibers (hypertrophy context). We demonstrated that RhoA is dispensable for SCs proliferation and differentiation; however, RhoA-deleted SCs have an inefficient movement even if their cytoskeleton assembly is not altered. Proliferative myoblast and differentiated myotubes without RhoA display a decreased expression of Chordin, suggesting a crosstalk between these genes for myoblast fusion regulation. These findings demonstrate the importance of RhoA in SC fusion regulation and its requirement to achieve an efficient skeletal muscle homeostasis restoration.


Asunto(s)
Fusión Celular , Fibras Musculares Esqueléticas , Células Satélite del Músculo Esquelético , Proteína de Unión al GTP rhoA , Humanos , Comunicación Celular , Hipertrofia/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/fisiología
9.
Sci Transl Med ; 15(685): eadd5275, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857434

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe and progressive myopathy leading to motor and cardiorespiratory impairment. We analyzed samples from patients with DMD and a preclinical rat model of severe DMD and determined that compromised repair capacity of muscle stem cells in DMD is associated with early and progressive muscle stem cell senescence. We also found that extraocular muscles (EOMs), which are spared by the disease in patients, contain muscle stem cells with long-lasting regenerative potential. Using single-cell transcriptomics analysis of muscles from a rat model of DMD, we identified the gene encoding thyroid-stimulating hormone receptor (Tshr) as highly expressed in EOM stem cells. Further, TSHR activity was involved in preventing senescence. Forskolin, which activates signaling downstream of TSHR, was found to reduce senescence of skeletal muscle stem cells, increase stem cell regenerative potential, and promote myogenesis, thereby improving muscle function in DMD rats. These findings indicate that stimulation of adenylyl cyclase leads to muscle repair in DMD, potentially providing a therapeutic approach for patients with the disease.


Asunto(s)
Distrofia Muscular de Duchenne , Receptores de Tirotropina , Animales , Ratas , Receptores Acoplados a Proteínas G , Fibras Musculares Esqueléticas , Células Madre , Regeneración , Tirotropina
10.
Front Cell Dev Biol ; 10: 880441, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465309

RESUMEN

The voltage-gated calcium channels (CaVs or VGCCs) are fundamental regulators of intracellular calcium homeostasis. When electrical activity induces their activation, the influx of calcium that they mediate or their interaction with intracellular players leads to changes in intracellular Ca2+ levels which regulate many processes such as contraction, secretion and gene expression, depending on the cell type. The essential component of the pore channel is the CaVα1 subunit. However, the fine-tuning of Ca2+-dependent signals is guaranteed by the modulatory role of the auxiliary subunits ß, α2δ, and γ of the CaVs. In particular, four different CaVß proteins (CaVß1, CaVß2, CaVß3, and CaVß4) are encoded by four different genes in mammalians, each of them displaying several splice variants. Some of these isoforms have been described in regulating CaVα1 docking and stability at the membrane and controlling the channel complex's conformational changes. In addition, emerging evidences have highlighted other properties of the CaVß subunits, independently of α1 and non-correlated to its channel or voltage sensing functions. This review summarizes the recent findings reporting novel roles of the auxiliary CaVß subunits and in particular their direct or indirect implication in regulating gene expression in different cellular contexts.

11.
Sci Rep ; 12(1): 9674, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690627

RESUMEN

Duchenne muscular dystrophy is a severe neuromuscular disease causing a progressive muscle wasting due to mutations in the DMD gene that lead to the absence of dystrophin protein. Adeno-associated virus (AAV)-based therapies aiming to restore dystrophin in muscles, by either exon skipping or microdystrophin expression, are very promising. However, the absence of dystrophin induces cellular perturbations that hinder AAV therapy efficiency. We focused here on the impact of the necrosis-regeneration process leading to nuclear centralization in myofiber, a common feature of human myopathies, on AAV transduction efficiency. We generated centronucleated myofibers by cardiotoxin injection in wild-type muscles prior to AAV injection. Intramuscular injections of AAV1 vectors show that transgene expression was drastically reduced in regenerated muscles, even when the AAV injection occurred 10 months post-regeneration. We show also that AAV genomes were not lost from cardiotoxin regenerated muscle and were properly localised in the myofiber nuclei but were less transcribed leading to muscle transduction defect. A similar defect was observed in muscles of the DMD mouse model mdx. Therefore, the regeneration process per se could participate to the AAV-mediated transduction defect observed in dystrophic muscles which may limit AAV-based therapies.


Asunto(s)
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Animales , Cardiotoxinas/farmacología , Dependovirus/genética , Dependovirus/metabolismo , Distrofina/genética , Distrofina/metabolismo , Terapia Genética , Vectores Genéticos/genética , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Regeneración/genética , Transgenes
12.
Acta Neuropathol Commun ; 10(1): 60, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468843

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by mutations in the Dystrophin gene and for which there is currently no cure. To bridge the gap between preclinical and therapeutic evaluation studies, we have generated a rat model for DMD that carries an exon 52 deletion (R-DMDdel52) causing a complete lack of dystrophin protein. Here we show that R-DMDdel52 animals recapitulated human DMD pathophysiological trajectory more faithfully than the mdx mouse model. We report that R-DMDdel52 rats displayed progressive and severe skeletal muscle loss associated with fibrotic deposition, fat infiltration and fibre type switch. Early fibrosis was also apparent in the cardiac muscle. These histological modifications led to severe muscle, respiratory and cardiac functional impairments leading to premature death around 1 year. Moreover, DMD muscle exhibited systemic inflammation with a mixed M1/M2 phenotype. A comparative single cell RNAseq analysis of the diaphragm muscle was performed, revealing cellular populations alteration and molecular modifications in all muscle cell types. We show that DMD fibroadipogenic progenitors produced elevated levels of cartilage oligomeric matrix protein, a glycoprotein responsible for modulating homeostasis of extracellular matrix, and whose increased concentration correlated with muscle fibrosis both in R-DMDdel52 rats and human patients. Fibrosis is a component of tissue remodelling impacting the whole musculature of DMD patients, at the tissue level but most importantly at the functional level. We therefore propose that this specific biomarker can optimize the prognostic monitoring of functional improvement of patients included in clinical trials.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Biomarcadores , Proteína de la Matriz Oligomérica del Cartílago/uso terapéutico , Distrofina/metabolismo , Fibrosis , Humanos , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/terapia , Ratas
13.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35917173

RESUMEN

The sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions, such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis. Our data demonstrate that NR1D1 deficiency in mice impaired sarco/endoplasmic reticulum calcium ATPase-dependent (SERCA-dependent) SR calcium uptake. NR1D1 acts on calcium homeostasis by repressing the SERCA inhibitor myoregulin through direct binding to its promoter. Restoration of myoregulin counteracted the effects of NR1D1 overexpression on SR calcium content. Interestingly, myoblasts from patients with Duchenne muscular dystrophy displayed lower NR1D1 expression, whereas pharmacological NR1D1 activation ameliorated SR calcium homeostasis and improved muscle structure and function in dystrophic mdx/Utr+/- mice. Our findings demonstrate that NR1D1 regulates muscle SR calcium homeostasis, pointing to its therapeutic potential for mitigating myopathy.


Asunto(s)
Calcio , Músculo Esquelético , Animales , Calcio/metabolismo , Homeostasis , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Retículo Sarcoplasmático/metabolismo
14.
EMBO Mol Med ; 14(5): e12860, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35298089

RESUMEN

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca2+ dysregulation linked to Ca2+ influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD+ ) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD+ glycohydrolase-producing modulators of Ca2+ signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers. Muscle NAD+ levels were also fully restored, while the levels of the two main products of CD38, nicotinamide and ADP-ribose, were reduced, in heart, diaphragm, and limb. In cardiomyocytes from mdx/CD38-/- mice, the pathological spontaneous Ca2+ activity was reduced, as well as in myotubes from DMD patients treated with isatuximab (SARCLISA® ) a monoclonal anti-CD38 antibody. Finally, treatment of mdx and utrophin-dystrophin-deficient (mdx/utr-/- ) mice with CD38 inhibitors resulted in improved skeletal muscle performances. Thus, we demonstrate that CD38 actively contributes to DMD physiopathology. We propose that a selective anti-CD38 therapeutic intervention could be highly relevant to develop for DMD patients.


Asunto(s)
Distrofia Muscular de Duchenne , ADP-Ribosil Ciclasa 1 , Animales , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Miocitos Cardíacos/patología , NAD/genética , NAD/uso terapéutico , NAD+ Nucleosidasa/genética , Fenotipo
15.
J Gen Physiol ; 153(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34636893

RESUMEN

One of the most important functions of skeletal muscle is to respond to nerve stimuli by contracting. This function ensures body movement but also participates in other important physiological roles, like regulation of glucose homeostasis. Muscle activity is closely regulated to adapt to different demands and shows a plasticity that relies on both transcriptional activity and nerve stimuli. These two processes, both dependent on depolarization of the plasma membrane, have so far been regarded as separated and independent processes due to a lack of evidence of common protein partners or molecular mechanisms. In this study, we reveal intimate functional interactions between the process of excitation-induced contraction and the process of excitation-induced transcriptional activity in skeletal muscle. We show that the plasma membrane voltage-sensing protein CaV1.1 and the ATP-releasing channel Pannexin-1 (Panx1) regulate each other in a reciprocal manner, playing roles in both processes. Specifically, knockdown of CaV1.1 produces chronically elevated extracellular ATP concentrations at rest, consistent with disruption of the normal control of Panx1 activity. Conversely, knockdown of Panx1 affects not only activation of transcription but also CaV1.1 function on the control of muscle fiber contraction. Altogether, our results establish the presence of bidirectional functional regulations between the molecular machineries involved in the control of contraction and transcription induced by membrane depolarization of adult muscle fibers. Our results are important for an integrative understanding of skeletal muscle function and may impact our understanding of several neuromuscular diseases.


Asunto(s)
Canales de Calcio Tipo L , Acoplamiento Excitación-Contracción , Canales de Calcio Tipo L/metabolismo , Contracción Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
16.
Biomedicines ; 9(2)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672764

RESUMEN

In skeletal muscle, long noncoding RNAs (lncRNAs) are involved in dystrophin protein stabilization but also in the regulation of myocytes proliferation and differentiation. Hence, they could represent promising therapeutic targets and/or biomarkers for Duchenne and Becker muscular dystrophy (DMD/BMD). DMD and BMD are X-linked myopathies characterized by a progressive muscular dystrophy with or without dilatative cardiomyopathy. Two-thirds of DMD gene mutations are represented by deletions, and 63% of patients carrying DMD deletions are eligible for 45 to 55 multi-exons skipping (MES), becoming BMD patients (BMDΔ45-55). We analyzed the genomic lncRNA presence in 38 BMDΔ45-55 patients and characterized the lncRNA localized in introns 44 and 55 of the DMD gene. We highlighted that all four lncRNA are differentially expressed during myogenesis in immortalized and primary human myoblasts. In addition, the lncRNA44s2 was pointed out as a possible accelerator of differentiation. Interestingly, lncRNA44s expression was associated with a favorable clinical phenotype. These findings suggest that lncRNA44s2 could be involved in muscle differentiation process and become a potential disease progression biomarker. Based on these results, we support MES45-55 therapy and propose that the design of the CRISPR/Cas9 MES45-55 assay consider the lncRNA sequences bordering the exonic 45 to 55 deletion.

17.
Mol Ther Methods Clin Dev ; 17: 695-708, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32346547

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease caused by an absence of the dystrophin protein, which is essential for muscle fiber integrity. Among the developed therapeutic strategies for DMD, the exon-skipping approach corrects the frameshift and partially restores dystrophin expression. It could be achieved through the use of antisense sequences, such as peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) or the small nuclear RNA-U7 carried by an adeno-associated virus (AAV) vector. AAV-based gene therapy approaches have potential for use in DMD treatment but are subject to a major limitation: loss of the AAV genome, necessitating readministration of the vector, which is not currently possible, due to the immunogenicity of the capsid. The PPMO approach requires repeated administrations and results in only weak cardiac dystrophin expression. Here, we evaluated a combination of PPMO- and AAV-based therapy in a mouse model of severe DMD. Striking benefits of this combined therapy were observed in striated muscles, with marked improvements in heart and diaphragm structure and function, with unrivalled extent of survival, opening novel therapeutic perspectives for patients.

18.
Sci Transl Med ; 11(517)2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694926

RESUMEN

Deciphering the mechanisms that govern skeletal muscle plasticity is essential to understand its pathophysiological processes, including age-related sarcopenia. The voltage-gated calcium channel CaV1.1 has a central role in excitation-contraction coupling (ECC), raising the possibility that it may also initiate the adaptive response to changes during muscle activity. Here, we revealed the existence of a gene transcription switch of the CaV1.1 ß subunit (CaVß1) that is dependent on the innervation state of the muscle in mice. In a mouse model of sciatic denervation, we showed increased expression of an embryonic isoform of the subunit that we called CaVß1E. CaVß1E boosts downstream growth differentiation factor 5 (GDF5) signaling to counteract muscle loss after denervation in mice. We further reported that aged mouse muscle expressed lower quantity of CaVß1E compared with young muscle, displaying an altered GDF5-dependent response to denervation. Conversely, CaVß1E overexpression improved mass wasting in aging muscle in mice by increasing GDF5 expression. We also identified the human CaVß1E analogous and show a correlation between CaVß1E expression in human muscles and age-related muscle mass decline. These results suggest that strategies targeting CaVß1E or GDF5 might be effective in reducing muscle mass loss in aging.


Asunto(s)
Envejecimiento/metabolismo , Canales de Calcio Tipo L/metabolismo , Embrión de Mamíferos/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Músculos/anatomía & histología , Transducción de Señal , Adulto , Anciano , Anciano de 80 o más Años , Animales , Atrofia , Canales de Calcio Tipo L/genética , Desnervación , Exones/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones , Músculos/inervación , Unión Neuromuscular/metabolismo , Tamaño de los Órganos , Condicionamiento Físico Animal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN/genética , Adulto Joven
19.
Sci Rep ; 8(1): 210, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29317724

RESUMEN

Adeno-associated virus (AAV) transduction efficiency depends on the way in which cellular proteins process viral genomes in the nucleus. In this study, we have investigated the binding of nuclear proteins to the double stranded D (dsD) sequence of the AAV inverted terminal repeat (ITRs) by electromobility shift assay. We present here several lines of evidence that transcription factors belonging to the RFX protein family bind specifically and selectively to AAV2 and AAV1 dsD sequences. Using supershift experiments, we characterize complexes containing RFX1 homodimers and RFX1/RFX3 heterodimers. Following transduction of HEK-293 cells, the AAV genome can be pulled-down by RFX1 and RFX3 antibodies. Moreover, our data suggest that RFX proteins which interact with transcriptional enhancers of several mammalian DNA viruses, can act as regulators of AAV mediated transgene expression.


Asunto(s)
Dependovirus/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Factor Regulador X1/metabolismo , Transducción Genética , Dependovirus/metabolismo , Células HEK293 , Humanos , Unión Proteica , Factores de Transcripción del Factor Regulador X/genética , Factor Regulador X1/genética , Secuencias Repetidas Terminales
20.
Skelet Muscle ; 8(1): 15, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703249

RESUMEN

BACKGROUND: Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the DMD gene coding for dystrophin, a protein being part of a large sarcolemmal protein scaffold that includes the neuronal nitric oxide synthase (nNOS). The nNOS was shown to play critical roles in a variety of muscle functions and alterations of its expression and location in dystrophic muscle fiber leads to an increase of the muscle fatigability. We previously revealed a decrease of nNOS expression in BMD patients all presenting a deletion of exons 45 to 55 in the DMD gene (BMDd45-55), impacting the nNOS binding site of dystrophin. Since several studies showed deregulation of microRNAs (miRNAs) in dystrophinopathies, we focused on miRNAs that could target nNOS in dystrophic context. METHODS: By a screening of 617 miRNAs in BMDd45-55 muscular biopsies using TLDA and an in silico study to determine which one could target nNOS, we selected four miRNAs. In order to select those that targeted a sequence of 3'UTR of NOS1, we performed luciferase gene reporter assay in HEK393T cells. Finally, expression of candidate miRNAs was modulated in control and DMD human myoblasts (DMDd45-52) to study their ability to target nNOS. RESULTS: TLDA assay and the in silico study allowed us to select four miRNAs overexpressed in muscle biopsies of BMDd45-55 compared to controls. Among them, only the overexpression of miR-31, miR-708, and miR-34c led to a decrease of luciferase activity in an NOS1-3'UTR-luciferase assay, confirming their interaction with the NOS1-3'UTR. The effect of these three miRNAs was investigated on control and DMDd45-52 myoblasts. First, we showed a decrease of nNOS expression when miR-708 or miR-34c were overexpressed in control myoblasts. We then confirmed that DMDd45-52 cells displayed an endogenous increased of miR-31, miR-708, and miR-34c and a decreased of nNOS expression, the same characteristics observed in BMDd45-55 biopsies. In DMDd45-52 cells, we demonstrated that the inhibition of miR-708 and miR-34c increased nNOS expression, confirming that both miRNAs can modulate nNOS expression in human myoblasts. CONCLUSION: These results strongly suggest that miR-708 and miR-34c, overexpressed in dystrophic context, are new actors involved in the regulation of nNOS expression in dystrophic muscle.


Asunto(s)
MicroARNs/genética , Distrofia Muscular de Duchenne/genética , Óxido Nítrico Sintasa de Tipo I/genética , Adolescente , Adulto , Anciano , Biopsia , Niño , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , MicroARNs/fisiología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mioblastos/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA