Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 245: 117944, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38109952

RESUMEN

Composting is a nature-based method used to stabilize organic matter and to transform nitrogen from animal farm manure or solid fraction of slurry (SFS). The use of composted material as source of nutrients for agriculture is limited by its potential to facilitate the propagation of biological hazards like pathogens and antibiotic-resistant bacteria and their associated antibiotic-resistance genes (ARG). We show here an experimental on-farm composting (one single batch) of pig SFS, performed under realistic conditions (under dry continental Mediterranean climate) for 280 days, and using two different bulking agents (maize straw and tree pruning residues) for the initial mixtures. The observed reduction in potentially pathogenic bacteria (80-90%) and of ARG loads (60-100%) appeared to be linked to variations in the microbiome composition occurring during the first 4 months of composting, and concurrent with the reduction of water-soluble ammonium and organic matter loads. Nitrification during the composting has also been observed for both composting piles. Similar patterns have been demonstrated at small scale and the present study stresses the fact that the removal can also occur at full scale. The results suggest that adequate composition of the starting material may accelerate the composting process and improve its global performance. While the results confirm the sanitization potential of composting, they also issue a warning to limit ARG loads in soils and in animal and human gut microbiomes, as the only way to limit their presence in foodstuffs and, therefore, to reduce consumers' exposure.


Asunto(s)
Compostaje , Microbiota , Animales , Antibacterianos/farmacología , Bacterias/genética , Granjas , Estiércol/microbiología , Nitrificación , Suelo/química , Porcinos
2.
Environ Res ; 231(Pt 2): 116186, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37224945

RESUMEN

Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Humanos , Material Particulado/toxicidad , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Biocombustibles , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Pulmón/química
3.
Environ Res ; 214(Pt 1): 113760, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35753374

RESUMEN

The potential spreading of antibiotic resistance genes (ARG) into agricultural fields and crops represent a fundamental limitation on the use of organic fertilization in food production systems. We present here a study of the effect of spreading four types of organic soil amendments (raw pig slurry, liquid and solid fractions, and a digested derivative) on demonstrative plots in two consecutive productive cycles of corn harvest (Zea mays), using a mineral fertilizer as a control, following the application of organic amendments at 32-62 T per ha (150 kg total N/ha) and allowing 5-8 months between fertilization and harvest. A combination of qPCR and high-throughput 16S rDNA sequencing methods showed a small, but significant impact of the fertilizers in both ARG loads and microbiomes in soil samples, particularly after the second harvesting cycle. The slurry solid fraction showed the largest impact on both ARG loads and microbiome variation, whereas its digestion derivatives showed a much smaller impact. Soil samples with the highest ARG loads also presented increased levels of tetracyclines, indicating a potential dual hazard by ARG and antibiotic residues linked to some organic amendments. Unlike soils, no accumulation of ARG or antibiotics was observed in corn leaves (used as fodder) or grains, and no grain sample reached detection limits for neither parameter. These results support the use of organic soil amendments in corn crops, while proposing the reduction of the loads of ARGs and antibiotics from the fertilizers to greatly reduce their potential risk.


Asunto(s)
Microbiota , Suelo , Animales , Antibacterianos , Productos Agrícolas , Farmacorresistencia Microbiana , Fertilizantes , Estiércol , Microbiología del Suelo , Porcinos , Zea mays
4.
Environ Res ; 194: 110513, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33242487

RESUMEN

The spread of antibiotic resistance in bacteria is a matter of global concern, and the identification of possible sources of the associated genetic elements (antibiotic resistance genes -ARGs-, components of the horizontal gene transfer mechanism), is becoming an urgent need. While the transmission of ARGs in medical settings have been adequately characterized, ARG propagation in agroecosystems remains insufficiently studied. Particularly crucial is the determination of potential risks associated to the use of swine slurries and related products as component of organic fertilizers, an increasingly used farming practice. We determined ARGs and antibiotic loads analysed from swine slurries and digestates from eight farms from Catalonia (NE Spain), and compared the results with their microbiome composition. Both ARGs and antibiotic were conspicuous in farm organic wastes, and the levels of some antibiotics exceeded currently accepted minimum inhibitory concentrations. Particularly, the presence of high loads of fluoroquinolones was directly correlated to the prevalence of the related qnrS1 ARG in the slurry. We also found evidence that ARG loads were directly correlated to the prevalence of determined bacterial taxa (Actinobacteria, Proteobacteria, Spirochaeta), a parameter that could be potentially modulated by the processing of the raw slurry prior to their use as fertilizer.


Asunto(s)
Fertilizantes , Estiércol , Agricultura , Animales , Antibacterianos , Fertilizantes/análisis , Genes Bacterianos , Suelo , Microbiología del Suelo , España , Porcinos
5.
Anal Bioanal Chem ; 412(23): 5695-5706, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32617759

RESUMEN

Metabolomics is currently an important field within bioanalytical science and NMR has become a key technique for drawing the full metabolic picture. However, the analysis of 1H NMR spectra of metabolomics samples is often very challenging, as resonances usually overlap in crowded regions, hindering the steps of metabolite profiling and resonance integration. In this context, a pre-processing method for the analysis of 1D 1H NMR data from metabolomics samples is proposed, consisting of the blind resolution and integration of all resonances of the spectral dataset by multivariate curve resolution-alternating least squares (MCR-ALS). The resulting concentration estimates can then be examined with traditional chemometric methods such as principal component analysis (PCA), ANOVA-simultaneous component analysis (ASCA), and partial least squares-discriminant analysis (PLS-DA). Since MCR-ALS does not require the use of spectral templates, the concentration estimates for all resonances are obtained even before being assigned. Consequently, the metabolomics study can be performed without neglecting any relevant resonance. In this work, the proposed pipeline performance was validated with 1D 1H NMR spectra from a metabolomics study of zebrafish upon acrylamide (ACR) exposure. Remarkably, this method represents a framework for the high-throughput analysis of NMR metabolomics data that opens the way for truly untargeted NMR metabolomics analyses. Graphical abstract.


Asunto(s)
Acrilamida/toxicidad , Espectroscopía de Protones por Resonancia Magnética/métodos , Animales , Análisis Discriminante , Metabolómica , Análisis Multivariante , Análisis de Componente Principal , Pez Cebra
6.
Environ Microbiol ; 21(4): 1466-1481, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30838733

RESUMEN

Thousands of semi-volatile hydrophobic organic pollutants (OPs) reach open oceans through atmospheric deposition, causing a chronic and ubiquitous pollution by anthropogenic dissolved organic carbon (ADOC). Hydrophobic ADOC accumulates in cellular lipids, inducing harmful effects on marine biota, and can be partially prone to microbial degradation. Unfortunately, their possible effects on microorganisms, key drivers of global biogeochemical cycles, remain unknown. We challenged coastal microbial communities from Ny-Ålesund (Arctic) and Livingston Island (Antarctica) with ADOC concentrations within the range of oceanic concentrations in 24 h. ADOC addition elicited clear transcriptional responses in multiple microbial heterotrophic metabolisms in ubiquitous groups such as Flavobacteriia, Gammaproteobacteria and SAR11. Importantly, a suite of cellular adaptations and detoxifying mechanisms, including remodelling of membrane lipids and transporters, was detected. ADOC exposure also changed the composition of microbial communities, through stimulation of rare biosphere taxa. Many of these taxa belong to recognized OPs degraders. This work shows that ADOC at environmentally relevant concentrations substantially influences marine microbial communities. Given that emissions of organic pollutants are growing during the Anthropocene, the results shown here suggest an increasing influence of ADOC on the structure of microbial communities and the biogeochemical cycles regulated by marine microbes.


Asunto(s)
Carbono/farmacología , Microbiota/efectos de los fármacos , Agua de Mar/química , Agua de Mar/microbiología , Regiones Antárticas , Regiones Árticas , Contaminantes Ambientales/farmacología , Océanos y Mares
7.
Environ Sci Technol ; 53(20): 11979-11987, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31517487

RESUMEN

Assessing the risk of neuroactive pharmaceuticals in the environment requires an understanding of their joint effects at low concentrations across species. Here, we assessed reproductive and transcriptional effects of single and ternary equi-effective mixture exposure to propranolol, diazepam, and carbamazepine on the crustacean Daphnia magna at environmentally relevant concentrations. The three compounds enhanced reproduction in adults and induced specific transcriptome changes in preadolescent individuals. Comparison of the results from single exposures to a ternary equi-effective mixture of the three compounds showed additive action. Transcriptomic analyses identified 3248 genes affected by at least one of the treatments, which were grouped into four clusters. Two clusters (1897 gene transcripts in total) behaved similarly, appearing either over- or under-represented relative to control, in all single and mixture treatments. The third and fourth clusters grouped genes differently transcribed upon exposure to diazepam and propranolol, respectively. Functional transcriptomics analysis indicated that the four clusters shared major deregulated signaling pathways implicated on energy, growth, reproduction, and neurologically related processes, which may be responsible for the observed reproductive effects. Thus, our study showed additive effects at the transcriptional and physiological level and provides a novel approach to the analysis of environmentally relevant mixtures of neuroactive compounds.


Asunto(s)
Daphnia , Contaminantes Químicos del Agua , Animales , Carbamazepina , Reproducción , Transcriptoma
8.
Environ Res ; 170: 16-25, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30554053

RESUMEN

Social concern has raised during the last years due to the development of antibiotic resistance hotspots in different environmental compartments, including the edible parts of crops. To assess the influence of the water quality used for watering, we collected samples from soil, roots, leaves and beans from the legume plant Vicia faba (broad beans) in three agricultural peri-urban plots (Barcelona, NE Spain), irrigated with either groundwater, river water, or reclaimed water. Antibiotic resistance genes (ARGs) sul1, tetM, qnrS1, blaCTX-M-32,blaOXA-58, mecA, and blaTEM were quantified by real-time PCR, along with 16S rDNA and intl1 sequences, as proxies for bacterial abundance and integron prevalence, respectively. Microbiome composition of all samples were analyzed by high-throughput DNA sequencing. Results show a gradient of bacterial species diversity and of ARG prevalence from highly diverse soil samples to microbially-poor beans and leaves, in which Rhizobiales essentially displaced all other groups, and that presented very small loads of ARGs and integron sequences. The data suggest that the microbiome and the associated resistome were likely influenced by agricultural practices and water quality, and that future irrigation water legal standards should consider the specific Physiology of the different crop plants.


Asunto(s)
Farmacorresistencia Microbiana/genética , Genes Bacterianos , Microbiología del Suelo , Vicia faba , Agricultura , Antibacterianos , Fabaceae , Suelo/química , España , Aguas Residuales
9.
Environ Res ; 177: 108608, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31377583

RESUMEN

Despite the social concern about the generalization of antibiotic resistance hotspots worldwide, very little is known about the contribution of different potential sources to the global risk. Here we present a quantitative analysis of the distribution of Antibiotic Resistance Genes (ARGs) in soil, rhizospheric soil, roots, leaves and beans in tomato, lettuce and broad beans crops (165 samples in total), grown in nine commercial plots distributed in four geographical zones in the vicinity of Barcelona (North East Spain). We also analyzed five soil samples from a nearby forest, with no record of agricultural activities. DNA samples were analyzed for their content in the ARGs sul1, tetM, qnrS1, blaCTX-M-32, blaOXA-58, mecA, and blaTEM, plus the integron intI1, using qPCR methods. In addition, soil microbiomes from the different plots were analyzed by amplicon-targeted 16S rRNA gene sequencing. Our data show a decreasing gradient of ARG loads from soil to fruits and beans, the latter showing only from 0.1 to 0.01% of the abundance values in soil. The type of crop was the main determinant for both ARG distribution and microbiome composition among the different plots, with minor contributions of geographic location and irrigation water source. We propose that soil amendment and/or fertilization, more than irrigation water, are the main drivers of ARG loads on the edible parts of the crop, and that they should therefore be specifically controlled.


Asunto(s)
Farmacorresistencia Microbiana/genética , Genes Bacterianos , Agricultura , Antibacterianos , Análisis de los Alimentos , ARN Ribosómico 16S , Suelo , Microbiología del Suelo , España
10.
Environ Res ; 170: 422-432, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30623890

RESUMEN

The reuse of treated wastewater (TWW) for irrigation and the use of biosolids and manures as soil amendment constitute significant pathways for the introduction of the contaminants of emerging concern (CECs) to the agricultural environment. Consequently, CECs are routinely detected in TWW-irrigated agricultural soils and runoff from such sites, in biosolids- and manure-amended soils, and in surface and groundwater systems and sediments receiving TWW. Crop plants grown in such contaminated agricultural environments have been found to uptake and accumulate CECs in their tissues, constituting possible vectors of introducing CECs into the food chain; an issue that is presently considered of high priority, thus needing intensive investigation. This review paper aims at highlighting the responsible mechanisms for the uptake of CECs by plants and the ability of each crop plant species to uptake and accumulate CECs in its edible tissues, thus providing tools for mitigating the introduction of these contaminants into the food chain. Both biotic (e.g. plants' genotype and physiological state, soil fauna) and abiotic factors (e.g. soil pore water chemistry, physico-chemical properties of CECs, environmental perturbations) have been proven to influence the ability of crop plants to uptake and accumulate CECs. According to authors' estimates, based on the thorough elaboration of knowledge produced by existing relevant studies, the ability of crop plants to uptake and accumulate CECs decrease in the order of leafy vegetables > root vegetables > cereals and fodder crops > fruit vegetables; though, the uptake of CECs by important crop plants, such as fruit trees, is not yet evaluated. Overall, further studies must be performed to estimate the potential of crop plants to uptake and accumulate CECs in their edible tissues, and to characterize the risk for human health represented by their presence in human and livestock food products.


Asunto(s)
Productos Agrícolas/metabolismo , Contaminantes del Suelo/metabolismo , Aguas Residuales , Riego Agrícola , Agricultura , Humanos , Suelo
11.
J Proteome Res ; 17(6): 2034-2044, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29707950

RESUMEN

Temperature is one of the most critical parameters for yeast growth, and it has deep consequences in many industrial processes where yeast is involved. Nevertheless, the metabolic changes required to accommodate yeast cells at high or low temperatures are still poorly understood. In this work, the ultimate responses of these induced transcriptomic effects have been examined using metabolomics-derived strategies. The yeast metabolome and lipidome have been characterized by 1D proton nuclear magnetic resonance spectroscopy and ultra-high-performance liquid chromatography-mass spectrometry at four temperatures, corresponding to low, optimal, high, and extreme thermal conditions. The underlying pathways that drive the acclimation response of yeast to these nonoptimal temperatures were evaluated using multivariate curve resolution-alternating least-squares. The analysis revealed three different thermal profiles (cold, optimal, and high temperature), which include changes in the lipid composition, secondary metabolic pathways, and energy metabolism, and we propose that they reflect the acclimation strategy of yeast cells to low and high temperatures. The data suggest that yeast adjusts membrane fluidity by changing the relative proportions of the different lipid families (acylglycerides, phospholipids, and ceramides, among others) rather than modifying the average length and unsaturation levels of the corresponding fatty acids.


Asunto(s)
Aclimatación , Metabolismo de los Lípidos , Metabolómica , Saccharomyces cerevisiae/metabolismo , Temperatura , Cromatografía Líquida de Alta Presión , Metabolismo Energético , Espectrometría de Masas , Fluidez de la Membrana , Espectroscopía de Protones por Resonancia Magnética , Saccharomyces cerevisiae/fisiología
12.
BMC Genomics ; 19(1): 370, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29776339

RESUMEN

BACKGROUND: Unravelling the link between genes and environment across the life cycle is a challenging goal that requires model organisms with well-characterized life-cycles, ecological interactions in nature, tractability in the laboratory, and available genomic tools. Very few well-studied invertebrate model species meet these requirements, being the waterflea Daphnia magna one of them. Here we report a full genome transcription profiling of D. magna during its life-cycle. The study was performed using a new microarray platform designed from the complete set of gene models representing the whole transcribed genome of D. magna. RESULTS: Up to 93% of the existing 41,317 D. magna gene models showed differential transcription patterns across the developmental stages of D. magna, 59% of which were functionally annotated. Embryos showed the highest number of unique transcribed genes, mainly related to DNA, RNA, and ribosome biogenesis, likely related to cellular proliferation and morphogenesis of the several body organs. Adult females showed an enrichment of transcripts for genes involved in reproductive processes. These female-specific transcripts were essentially absent in males, whose transcriptome was enriched in specific genes of male sexual differentiation genes, like doublesex. CONCLUSION: Our results define major characteristics of transcriptional programs involved in the life-cycle, differentiate males and females, and show that large scale gene-transcription data collected in whole animals can be used to identify genes involved in specific biological and biochemical processes.


Asunto(s)
Daphnia/crecimiento & desarrollo , Daphnia/genética , Genómica/métodos , Estadios del Ciclo de Vida/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Transcripción Genética , Animales
13.
Anal Chem ; 90(21): 12422-12430, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30350620

RESUMEN

In nuclear magnetic resonance (NMR) metabolomics, most of the studies have been focused on the analysis of one-dimensional proton (1D 1H) NMR, whereas the analysis of other nuclei, such as 13C, or other NMR experiments are still underrepresented. The preference of 1D 1H NMR metabolomics lies on the fact that it has good sensitivity and a short acquisition time, but it lacks spectral resolution because it presents a high degree of overlap. In this study, the growth metabolism of yeast ( Saccharomyces cerevisiae) was analyzed by 1D 1H NMR and by two-dimensional (2D) 1H-13C heteronuclear single quantum coherence (HSQC) NMR spectroscopy, leading to the detection of more than 50 metabolites with both analytical approaches. These two analyses allow for a better understanding of the strengths and intrinsic limitations of the two types of NMR approaches. The two data sets (1D and 2D NMR) were investigated with PCA, ASCA, and PLS DA chemometric methods, and similar results were obtained regardless of the data type used. However, data-analysis time for the 2D NMR data set was substantially reduced when compared with the data analysis of the corresponding 1H NMR data set because, for the 2D NMR data, signal overlap was not a major problem and deconvolution was not required. The comparative study described in this work can be useful for the future design of metabolomics workflows, to assist in the selection of the most convenient NMR platform and to guide the posterior data analysis of biomarker selection.


Asunto(s)
Metabolómica , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13 , Espectroscopía de Protones por Resonancia Magnética
14.
Environ Sci Technol ; 50(24): 13565-13573, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993043

RESUMEN

Accumulation of storage lipids in the crustacean Daphnia magna can be altered by a number of exogenous and endogenous compounds, like 20-hydroxyecdysone (natural ligand of the ecdysone receptor, EcR), methyl farnesoate, pyrirproxyfen (agonists of the methyl farnesoate receptor, MfR), and tributyltin (agonist of the retinoid X acid receptor, RXR). This effect, analogous to the obesogenic disruption in mammals, alters Daphnia's growth and reproductive investment. Here we propose that storage lipid accumulation in droplets is regulated in Daphnia by the interaction between the nuclear receptor heterodimer EcR:RXR and MfR. The model was tested by determining changes in storage lipid accumulation and on gene transcription in animals exposed to different effectors of RXR, EcR, and MfR signaling pathways, either individually or in combination. RXR, EcR, and MfR agonists increased storage lipid accumulation, whereas fenarimol and testosterone (reported inhibitors of ecdysteroid synthesis and an EcR antagonist, respectively) decreased it. Joint effects of mixtures with fenarimol, testosterone, and ecdysone were antagonistic, mixtures of juvenoids showed additive effects following a concentration addition model, and combinations of tributyltin with juvenoids resulted in greater than additive effects. Co-exposures of ecdysone with juvenoids resulted in deregulation of ecdysone- and farnesoid-regulated genes, accordingly with the observed changes in lipid accumulation These results indicate the requirement of ecdysone binding to the EcR:RXR:MfR complex to regulate lipid storage and that an excess of ecdysone disrupts the whole process, probably by triggering negative feedback mechanisms.


Asunto(s)
Daphnia/efectos de los fármacos , Receptores X Retinoide , Animales , Ligandos , Reproducción , Transducción de Señal , Factores de Transcripción/metabolismo
15.
Bull Environ Contam Toxicol ; 97(6): 843-847, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27704189

RESUMEN

The implementation of elemental chlorine-free (ECF) bleaching methods has drastically reduced the aquatic toxicity of Kraft mill effluents during the last decade. However, the residual toxicity of Kraft mill effluents is still a potential concern for the environment, even when subjected to secondary wastewater treatment. The aim of this study is characterize potential sublethal effects of ECF Kraft mill effluents using Daphnia magna as model species. D. magna exposed towards increasing concentration of ECF Kraft mill effluent showed a significant, dose-dependent reduction in feeding. Conversely, post-feeding assay, life history, and allometric growth analyses showed stimulatory, rather than inhibitory effects in exposed animals at low concentrations, while high concentrations of ECF Kraft mill effluents reduced their reproductive output. These results suggest a hormetic effect in which moderate concentrations of the effluent had a stimulatory effect with higher concentrations causing inhibition in some variables.


Asunto(s)
Daphnia/efectos de los fármacos , Daphnia/crecimiento & desarrollo , Conducta Alimentaria/efectos de los fármacos , Aguas Residuales/toxicidad , Animales , Bioensayo , Relación Dosis-Respuesta a Droga
16.
BMC Genomics ; 16: 354, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25943386

RESUMEN

BACKGROUND: The transcriptional response of adult zebra mussels (Dreissena polymorpha) to heavy metals (mercury, copper, and cadmium) was analyzed by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to study the coordinated regulation of different metal-, oxidative stress- and xenobiotic defence-related genes in gills and digestive gland. Regulatory network analyses allowed the comparison of this response between different species and taxa. RESULTS: Chemometric analyses allowed identifying the effects of these metals clearly separating control and treated samples of both tissues. Interactions between the different genes, either in the same or between both tissues, were analysed to identify correlations and to propose stress-related genes' regulatory networks. These networks were finally compared with existing data from human, mouse, zebrafish, Drosophila and the roundworm to evaluate their mechanistically-known response to metals (and to stressors in general) with the correlations observed in the still poorly-known, invasive zebra mussel. CONCLUSIONS: Our analyses found a general conservation of regulation genes and of their interactions among the different considered species, and may serve as a guide to extrapolate regulatory data from model species to lesser-known environmentally (or medically) relevant species.


Asunto(s)
Biología Computacional , Dreissena/efectos de los fármacos , Dreissena/genética , Metales Pesados/toxicidad , Transcripción Genética/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Análisis de Varianza , Animales , Gráficos por Computador , Análisis Discriminante , Dreissena/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Análisis de los Mínimos Cuadrados , Ratones , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Análisis de Componente Principal , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Electrophoresis ; 36(18): 2324-2335, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25820835

RESUMEN

In this work, an untargeted approach based on capillary electrophoresis-mass spectrometry (CE-MS) in combination with multivariate data analyses is proposed as a high-throughput general methodology for metabolomic studies. First, total ion electropherograms (TIEs) were considered for exploratory and classification purposes by means of principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Then, multivariate curve resolution alternating least squares (MCR-ALS) was applied to the multiple full scan MS data sets. This strategy permitted the resolution of a large number of metabolites being characterized by their electrophoretic peaks and their corresponding mass spectra. The proposed approach allowed solving additional electrophoretic issues, such as background noise contributions, low signal-to-noise ratios, asymmetric peaks and migration time shifts. The usefulness of the proposed methodology is demonstrated in a comparative study of the metabolic profiles from baker's yeast (Saccharomyces cerevisiae) samples cultured at two temperatures, 30°C and 37°C. A total number of 80 metabolites were relevant to yeast samples differentiation at the two temperatures and almost 50 of them were tentatively identified based on their accurate experimental molecular mass. The results show that changes in amino acid, nucleotide and lipid metabolic pathways participated in the acclimatization of yeast cells to grow at 37°C.

18.
EMBO J ; 29(4): 740-8, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20057354

RESUMEN

How DNA helical tension is constrained along the linear chromosomes of eukaryotic cells is poorly understood. In this study, we induced the accumulation of DNA (+) helical tension in Saccharomyces cerevisiae cells and examined how DNA transcription was affected along yeast chromosomes. The results revealed that, whereas the overwinding of DNA produced a general impairment of transcription initiation, genes situated at <100 kb from the chromosomal ends gradually escaped from the transcription stall. This novel positional effect seemed to be a simple function of the gene distance to the telomere: It occurred evenly in all 32 chromosome extremities and was independent of the atypical structure and transcription activity of subtelomeric chromatin. These results suggest that DNA helical tension dissipates at chromosomal ends and, therefore, provides a functional indication that yeast chromosome extremities are topologically open. The gradual escape from the transcription stall along the chromosomal flanks also indicates that friction restrictions to DNA twist diffusion, rather than tight topological boundaries, might suffice to confine DNA helical tension along eukaryotic chromatin.


Asunto(s)
Cromosomas Fúngicos/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Hongos/genética , Perfilación de la Expresión Génica , Genes Fúngicos , Modelos Biológicos , Modelos Moleculares , Conformación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/genética , Telómero/genética , Telómero/metabolismo , Transcripción Genética
19.
Environ Res ; 135: 361-75, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25462686

RESUMEN

Many xenobiotic compounds with endocrine disrupting activity have been described since the late eighties. These compounds are able to interact with natural hormone systems and potentially induce deleterious effects in wildlife, notably piscine species. However, while the characterization of endocrine disruptors with "dioxin-like", estrogenic or androgenic activities is relatively well established, little is known about environmentally relevant pollutants that may act at thyroid system level. Iodothyronine deiodinases, the key enzymes in the activation and inactivation of thyroid hormones, have been suggested as suitable biomarkers for thyroid metabolism disruption. The present article reviews the biotic and abiotic factors that are able to modulate deiodinases in teleosts, a representative model organism for vertebrates. Data show that deiodinases are highly sensitive to several physiological and physical variables, so they should be taken into account to establish natural basal deiodination patterns to further understand responses under chemical exposure. Among xenobiotic compounds, brominated flame retardants are postulated as chemicals of major concern because of their similar structure shared with thyroid hormones. More ambiguous results are shown for the rest of compounds, i.e. polychlorinated biphenyls, perfluorinated chemicals, pesticides, metals and synthetic drugs, in part due to the limited information available. The different mechanisms of action still remain unknown for most of those compounds, although several hypothesis based on observed effects are discussed. Future tasks are also suggested with the aim of moving forward in the full characterization of chemical compounds with thyroid disrupting activity.


Asunto(s)
Biomarcadores/metabolismo , Disruptores Endocrinos/efectos adversos , Contaminantes Ambientales/efectos adversos , Peces/metabolismo , Yoduro Peroxidasa/metabolismo , Glándula Tiroides/metabolismo , Xenobióticos/efectos adversos , Animales , Retardadores de Llama/efectos adversos , Yoduro Peroxidasa/química , Modelos Biológicos , Estructura Molecular , Valores de Referencia , Glándula Tiroides/efectos de los fármacos , Hormonas Tiroideas/química , Hormonas Tiroideas/metabolismo
20.
Nucleic Acids Res ; 40(16): 7907-15, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22718977

RESUMEN

The extent to which the DNA relaxation activities of eukaryotic topoisomerases (topo I and topo II) are redundant during gene transcription is unclear. Although both enzymes can often substitute for each other in vivo, studies in vitro had revealed that the DNA cross-inversion mechanism of topo II relaxes chromatin more efficiently than the DNA strand-rotation mechanism of topo I. Here, we show that the inactivation of topo II in budding yeast produces an abrupt decrease of virtually all polyA+ RNA transcripts of length above ≈ 3 kb, irrespective of their function. This reduction is not related to transcription initiation but to the stall of RNA polymerase II (Pol II) during elongation. This reduction does not occur in topo I mutants; and it is not avoided by overproducing yeast topo I or bacterial topo I, which relaxes (-) DNA supercoils. It is rescued by catalytically active topo II or a GyrBA enzyme, which relaxes (+) DNA supercoils. These findings demonstrate that DNA relaxation activities of topo I and topo II are not interchangeable in vivo. Apparently, only topo II relaxes efficiently the (+) DNA supercoils that stall the advancement of Pol II in long genes. A mechanistic model is proposed.


Asunto(s)
ADN-Topoisomerasas de Tipo II/fisiología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Elongación de la Transcripción Genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Superhelicoidal/metabolismo , Mutación , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Iniciación de la Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA