Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 113(1): 92-105, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36401738

RESUMEN

Phloridzin is the most abundant polyphenolic compound in apple (Malus × domestica Borkh.), which results from the action of a key phloretin-specific UDP-2'-O-glucosyltransferase (MdPGT1). Here, we simultaneously assessed the effects of targeting MdPGT1 by conventional transgenesis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing. To this end, we conducted transcriptomic and metabolic analyses of MdPGT1 RNA interference knockdown and genome-edited lines. Knockdown lines exhibited characteristic impairment of plant growth and leaf morphology, whereas genome-edited lines exhibited normal growth despite reduced foliar phloridzin. RNA-sequencing analysis identified a common core of regulated genes, involved in phenylpropanoid and flavonoid pathways. However, we identified genes and processes differentially modulated in stunted and genome-edited lines, including key transcription factors and genes involved in phytohormone signalling. Therefore, we conducted a phytohormone profiling to obtain insight into their role in the phenotypes observed. We found that salicylic and jasmonic acid were increased in dwarf lines, whereas auxin and ABA showed no correlation with the growth phenotype. Furthermore, bioactive brassinosteroids were commonly up-regulated, whereas gibberellin GA4 was distinctively altered, showing a sharp decrease in RNA interference knockdown lines. Expression analysis by reverse transcriptase-quantitative polymerase chain reaction expression analysis further confirmed transcriptional regulation of key factors involved in brassinosteroid and gibberellin interaction. These findings suggest that a differential modulation of phytohormones may be involved in the contrasting effects on growth following phloridzin reduction. The present study also illustrates how CRISPR/Cas9 genome editing can be applied to dissect the contribution of genes involved in phloridzin biosynthesis in apple.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Sistemas CRISPR-Cas , Florizina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/metabolismo , Edición Génica/métodos
2.
J Nat Prod ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889235

RESUMEN

Despite millennia of therapeutic plant use, deliberate exploitation of Cannabis's diverse biomedical potential has only recently gained attention. Bioactivity studies focus mainly on cannabidiol (CBD) and tetrahydrocannabinol (THC) with limited information about the broader cannabinome's "minor phytocannabinoids". In this context, our research targeted the synthesis of minor cannabinoids containing a lateral chain with 3 or 4 carbon atoms, focusing on cannabigerol (CBG) and cannabichromene (CBC) analogues. Using known and innovative strategies, we achieved the synthesis of 11 C3 and C4 analogues, five of which were inhibitors of skin inflammation, with the CBG-C4 ester derivative emerging as the most potent compound.

3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731983

RESUMEN

Acne vulgaris is a prevalent skin disorder affecting many young individuals, marked by keratinization, inflammation, seborrhea, and colonization by Cutibacterium acnes (C. acnes). Ellagitannins, known for their antibacterial and anti-inflammatory properties, have not been widely studied for their anti-acne effects. Chestnut (Castanea sativa Mill., C. sativa), a rich ellagitannin source, including castalagin whose acne-related bioactivity was previously unexplored, was investigated in this study. The research assessed the effect of C. sativa leaf extract and castalagin on human keratinocytes (HaCaT) infected with C. acnes, finding that both inhibited IL-8 and IL-6 release at concentrations below 25 µg/mL. The action mechanism was linked to NF-κB inhibition, without AP-1 involvement. Furthermore, the extract displayed anti-biofilm properties and reduced CK-10 expression, indicating a potential role in mitigating inflammation, bacterial colonization, and keratosis. Castalagin's bioactivity mirrored the extract's effects, notably in IL-8 inhibition, NF-κB inhibition, and biofilm formation at low µM levels. Other polyphenols, such as flavonol glycosides identified via LC-MS, might also contribute to the extract's biological activities. This study is the first to explore ellagitannins' potential in treating acne, offering insights for developing chestnut-based anti-acne treatments pending future in vivo studies.


Asunto(s)
Acné Vulgar , Fagaceae , Taninos Hidrolizables , Extractos Vegetales , Hojas de la Planta , Humanos , Taninos Hidrolizables/farmacología , Fagaceae/química , Acné Vulgar/microbiología , Acné Vulgar/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , FN-kappa B/metabolismo , Células HaCaT , Propionibacterium acnes/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Interleucina-8/metabolismo
4.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894827

RESUMEN

Helicobacter pylori is a leading cause of chronic gastric inflammation, generally associated with gastritis and adenocarcinoma. Activation of the NF-κB pathway mainly contributes to the inflammatory phenotype observed in H. pylori infection in humans and experimental models. Since the gastric epithelium undergoes rapid turnover, inflammation and pathogenicity of H. pylori result from early phase and chronically activated pathways. In the present study we investigated the early host response to H. pylori in non-tumoral human gastric epithelial cells (GES-1). To dissect the pathogen-specific mechanisms we also examined the response to tumor necrosis factor (TNF), a prototypical cytokine. By analyzing the activation state of NF-κB signaling, cytokine expression and secretion, and the transcriptome, we found that the inflammatory response of GES-1 cells to H. pylori and TNF results from activation of multiple pathways and transcription factors, e.g., NF-κB and CCAAT/enhancer-binding proteins (CEBPs). By comparing the transcriptomic profiles, we found that H. pylori infection induces a less potent inflammatory response than TNF but affects gene transcription to a greater extent by specifically inducing transcription factors such as CEBPß and numerous zinc finger proteins. Our study provides insights on the cellular pathways modulated by H. pylori in non-tumoral human gastric cells unveiling new potential targets.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , FN-kappa B/metabolismo , Infecciones por Helicobacter/complicaciones , Células Epiteliales/metabolismo , Inflamación/metabolismo , Mucosa Gástrica/metabolismo , Citocinas/metabolismo
5.
Cells Tissues Organs ; 211(5): 611-627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34644704

RESUMEN

Human epidermis responds to ultraviolet (UV)B-induced damage by tolerating it, restoring it, or undergoing programmed cell death when the damage is massive. Recently, compounds rich in polyphenols, such as Vitis vinifera L. leaf extract (VVLe), have attracted a lot of interest for skin protection. We investigated the effect of VVLe pre-treatment (1 h) in a 2D model of HaCaT cells and in 3D organotypic cultures of normal human skin exposed to a single UVB dose to study the immediate specific events 1 h and the response orchestrated in the epidermal layer 24 h after irradiation, respectively. In both models, transmission electron microscopy analysis was carried out. The expression of the inducible keratin K17, the activation of both pSTAT3 and Nuclear Factor (NF)-κB signalling pathways, and the epidermal distribution of Toll-Like Receptor (TLR) 4 were assessed by immunofluorescence in the 2D and 3D model. In 3D organotypic cultures, thanks to the preservation of a multi-layered structure, the epidermal distribution of the differentiation biomarkers K10 and K14 as well as of K16 was analysed by immunofluorescence, while the release of interleukin (IL)-8 was evaluated by ELISA. In skin bioptic fragments, cytotoxicity and genotoxicity were investigated by LDH assay and Alkaline Comet assay, respectively, and then compared to cell proliferation. The epidermal distribution of the histone γ-H2AX, indicating the fragmented DNA, was analysed by immunofluorescence. In both experimental models, VVLe tuned UVB-induced K17 expression to a different extent in HaCaT cells and in the skin. In HaCaT cells, pSTAT3 activation was induced by UVB and reverted by VVLe pre-treatment. TLR4 expression was triggered by UVB in both models, but VVLe pre-treatment abolished this event only in HaCaT cells. NF-κB immunostaining increased both in the nucleus and in the cytoplasm only in HaCaT cells after UVB irradiation. In all irradiated skin samples, VVLe pre-treatment was not able to revert the inhibition of epidermal proliferation, K16 expression, and IL-8 secretion. The effectiveness of VVLe in contrasting the irradiation-induced genotoxicity still remains unclear. In conclusion, our study clearly shows that K17 is a robust marker induced in keratinocytes upon UVB stimulation and that this event can be reverted by a pre-treatment with VVLe. On the whole, these observations represent a novelty in the scenario of the complex relationships between the effects exerted by UVB rays on human skin and significantly improve the knowledge regarding the modulation of the early epidermal response induced by a single exposure to UVB in the presence of VVLe.


Asunto(s)
Receptor Toll-Like 4 , Vitis , Biomarcadores , Epidermis , Histonas , Humanos , Interleucina-8 , Queratina-17 , FN-kappa B , Extractos Vegetales/farmacología , Vitis/química
6.
Planta Med ; 88(7): 492-506, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33851375

RESUMEN

The use of Cannabis sativa is currently recognized to ease certain types of chronic pain, reduce chemotherapy-induced nausea, and improve anxiety. Nevertheless, few studies highlighted the therapeutic potential of C. sativa extracts and related phytocannabinoids for a variety of widespread skin disorders including acne, atopic dermatitis, psoriasis, pruritus, and pain. This review summarized the current evidence on the effects of phytocannabinoids at the cutaneous level through the collection of in vitro, in vivo, and clinical studies published on PubMed, Scopus, Embase, and Web of Science until October 2020. Phytocannabinoids have demonstrated potential anti-inflammatory, antioxidant, anti-aging, and anti-acne properties by various mechanisms involving either CB1/2-dependent and independent pathways. Not only classical immune cells, but also several skin-specific actors, such as keratinocytes, fibroblasts, melanocytes, and sebocytes, may represent a target for phytocannabinoids. Cannabidiol, the most investigated compound, revealed photoprotective, antioxidant, and anti-inflammatory mechanisms at the cutaneous level, while the possible impact on cell differentiation, especially in the case of psoriasis, would require further investigation. Animal models and pilot clinical studies supported the application of cannabidiol in inflammatory-based skin diseases. Also, one of the most promising applications of non-psychotropic phytocannabinoids is the treatment of seborrheic disorders, especially acne. In conclusion, the incomplete knowledge of the role of the endocannabinoid system in skin disorders emerged as an important limit for pharmacological investigations. Moreover, the limited studies conducted on C. sativa extracts suggested a higher potency than single phytocannabinoids, thus stimulating new research on phytocannabinoid interaction.


Asunto(s)
Acné Vulgar , Cannabidiol , Cannabinoides , Cannabis , Psoriasis , Acné Vulgar/tratamiento farmacológico , Animales , Antioxidantes/uso terapéutico , Cannabidiol/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Psoriasis/tratamiento farmacológico
7.
BMC Biol ; 19(1): 185, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479564

RESUMEN

BACKGROUND: A number of cellular processes have evolved in metazoans that increase the proteome repertoire in relation to the genome, such as alternative splicing and translation recoding. Another such process, translational stop codon readthrough (SCR), generates C-terminally extended protein isoforms in many eukaryotes, including yeast, plants, insects, and humans. While comparative genome analyses have predicted the existence of programmed SCR in many species including humans, experimental proof of its functional consequences are scarce. RESULTS: We show that SCR of the Drosophila POU/Oct transcription factor Ventral veins lacking/Drifter (Vvl/Dfr) mRNA is prevalent in certain tissues in vivo, reaching a rate of 50% in the larval prothoracic gland. Phylogenetically, the C-terminal extension is conserved and harbors intrinsically disordered regions and amino acid stretches implied in transcriptional activation. Elimination of Vvl/Dfr translational readthrough by CRISPR/Cas9 mutagenesis changed the expression of a large number of downstream genes involved in processes such as chromatin regulation, neurogenesis, development, and immune response. As a proof-of-principle, we demonstrate that the C-terminal extension of Vvl/Dfr is necessary for correct timing of pupariation, by increasing the capacity to regulate its target genes. The extended Vvl/Dfr isoform acts in synergy with the transcription factor Molting defective (Mld) to increase the expression and biosynthesis of the steroid hormone ecdysone, thereby advancing pupariation. Consequently, late-stage larval development was prolonged and metamorphosis delayed in vvl/dfr readthrough mutants. CONCLUSIONS: We demonstrate that translational recoding of a POU/Oct transcription factor takes place in a highly tissue-specific and temporally controlled manner. This dynamic and regulated recoding is necessary for normal expression of a large number of genes involved in many cellular and developmental processes. Loss of Vvl/Dfr translational readthrough negatively affects steroid hormone biosynthesis and delays larval development and progression into metamorphosis. Thus, this study demonstrates how SCR of a transcription factor can act as a developmental switch in a spatiotemporal manner, feeding into the timing of developmental transitions between different life-cycle stages.


Asunto(s)
Drosophila , Animales , Codón de Terminación , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisona , Regulación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012541

RESUMEN

Hamamelis virginiana L. bark extract is a traditional remedy for skin affections, including atopic dermatitis/eczema (AD). Hamamelis preparations contain tannins, including hamamelitannin (HT), although their pharmacological role in AD is still unknown. This study aimed to study the rational for its topical use by considering the impact of crucial biomarkers on AD pathogenesis. A standardized extract (HVE) (0.5−125 µg/mL) was compared to hamamelitannin (HT), its main compound (0.5−5 µg/mL), in a model of human keratinocytes (HaCaTs), challenged with an AD-like cytokine milieu (TNF-α, IFN-γ, and IL-4). HVE inhibited the release of mediators involved in skin autoimmunity (IL-6 and IL-17C) and allergy (TSLP, IL-6, CCL26, and MMP-9) with a concentration-dependent fashion (IC50s < 25 µg/mL). The biological mechanism was ascribed, at least in part, to the impairment of the NF-κB-driven transcription. Moreover, HVE counteracted the proliferative effects of IL-4 and recovered K10, a marker of skin differentiation. Notably, HT showed activity on well-known targets of IL-4 pathway (CCL26, K10, cell proliferation). To the best of our knowledge, this work represents the first demonstration of the potential role of Hamamelis virginiana in the control of AD symptoms, such as itch and skin barrier impairment, supporting the relevance of the whole phytocomplex.


Asunto(s)
Dermatitis Atópica , Hamamelis , Citocinas/farmacología , Dermatitis Atópica/tratamiento farmacológico , Humanos , Interleucina-4/farmacología , Interleucina-6/farmacología , Queratinocitos , Corteza de la Planta , Extractos Vegetales/farmacología , Piel
9.
Molecules ; 27(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36364420

RESUMEN

Plants rich in hydrolyzable tannins were traditionally used all over the world for a variety of chronic inflammatory disorders, including arthritis, colitis, and dermatitis. However, the knowledge of their immunological targets is still limited though fundamental for their rational use in phytotherapy. The recent advances regarding the pathogenesis of inflammatory-based diseases represent an opportunity to elucidate the pharmacological mechanism of plant-derived metabolites with immunomodulatory activity. This review collects recent articles regarding the role of hydrolyzable tannins and their gut metabolites in Th1, Th2, and Th17 inflammatory responses. In line with the traditional use, rheumatoid arthritis (RA), inflammatory bowel diseases (IBDs), psoriasis, atopic dermatitis (AD), and asthma were the most investigated diseases. A substantial body of in vivo studies suggests that, beside innate response, hydrolyzable tannins may reduce the levels of Th-derived cytokines, including IFN-γ, IL-17, and IL-4, following oral administration. The mode of action is multitarget and may involve the impairment of inflammatory transcription factors (NF-κB, NFAT, STAT), enzymes (MAPKs, COX-2, iNOS), and ion channels. However, their potential impact on pathways with renewed interest for inflammation, such as JAK/STAT, or the modulation of the gut microbiota demands dedicate studies.


Asunto(s)
Artritis Reumatoide , Dermatitis Atópica , Humanos , Taninos Hidrolizables/farmacología , Células Th17 , Citocinas/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Dermatitis Atópica/metabolismo
10.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364292

RESUMEN

L-Dopa (LD), a substance used medically in the treatment of Parkinson's disease, is found in several natural products, such as Vicia faba L., also known as broad beans. Due to its low chemical stability, LD analysis in plant matrices requires an appropriate optimization of the chosen analytical method to obtain reliable results. This work proposes an HPLC-UV method, validated according to EURACHEM guidelines as regards linearity, limits of detection and quantification, precision, accuracy, and matrix effect. The LD extraction was studied by evaluating its aqueous stability over 3 months. The best chromatographic conditions were found by systematically testing several C18 stationary phases and acidic mobile phases. In addition, the assessment of the best storage treatment of Vicia faba L. broad beans able to preserve a high LD content was performed. The best LD determination conditions include sun-drying storage, extraction in HCl 0.1 M, chromatographic separation with a Discovery C18 column, 250 × 4.6 mm, 5 µm particle size, and 99% formic acid 0.2% v/v and 1% methanol as the mobile phase. The optimized method proposed here overcomes the problems linked to LD stability and separation, thus contributing to the improvement of its analytical determination.


Asunto(s)
Vicia faba , Cromatografía Líquida de Alta Presión/métodos , Vicia faba/química , Levodopa , Metanol
11.
Molecules ; 26(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065200

RESUMEN

Ribes nigrum L. (blackcurrant) leaf extracts, due to high levels of flavonols and anthocyanins, have been shown to exhibit beneficial effects in inflammatory diseases. However, whereas their traditional use has been investigated and validated in several models of inflammation and oxidative stress, the possible impact on skin disorders is still largely unknown. The purpose of this work was to elucidate the effects of R. nigrum leaf extract (RNLE) on keratinocyte-derived inflammatory mediators, elicited by a Th1 or Th2 cytokine milieu. HaCaT cells were challenged with TNF-α, either alone or in combination with the costimulatory cytokines IFN-γ or IL-4, and the release of proinflammatory cytokines and mediators (IL-8, IL-6, s-ICAM-1, and TSLP) was evaluated. The results showed that RNLE preferentially interferes with IFN-γ signaling, demonstrating only negligible activity on TNF-α or IL-4. This effect was attributed to flavonols, which might also account for the ability of RNLE to impair TNF-α/IL-4-induced TSLP release in a cAMP-independent manner. These results suggest that RNLE could have an antiallergic effect mediated in keratinocytes via mechanisms beyond histamine involvement. In conclusion, the discovery of RNLE preferential activity against IFN-γ-mediated inflammation suggests potential selectivity against Th1 type response and the possible use in Th1 inflammatory diseases.


Asunto(s)
Inflamación/inducido químicamente , Interferón gamma/farmacología , Queratinocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Ribes/química , Línea Celular , Citocinas/administración & dosificación , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/administración & dosificación , Mediadores de Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Quempferoles/farmacología , Queratinocitos/metabolismo , FN-kappa B/metabolismo , Quercetina/farmacología
12.
Molecules ; 26(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578815

RESUMEN

Coccoloba cowellii Britton (Polygonaceae) is an endemic and critically endangered plant that only grows in Camagüey, a province of Cuba. In this study, a total of 13 compounds were identified in a methanolic leaf extract, employing a dereplication of the UHPLC-HRMS data by means of feature-based molecular networking (FBMN) analysis in the Global Natural Products Social Molecular Network (GNPS), together with the interpretation of the MS/MS data and comparison with the literature. The major constituents were glucuronides and glycosides of myricetin and quercetin, as well as epichatechin-3-O-gallate, catechin, epicatechin and gallic acid, all of them being reported for the first time in C. cowellii leaves. The leaf extract was also tested against various microorganisms, and it showed a strong antifungal effect against Candida albicans ATCC B59630 (azole-resistant) (IC50 2.1 µg/mL) and Cryptococcus neoformans ATCC B66663 (IC50 4.1 µg/mL) with no cytotoxicity (CC50 > 64.0 µg/mL) on MRC-5 SV2 cells, determined by the resazurin assay. Additionally, the extract strongly inhibited COX-1 and COX-2 enzyme activity using a cell-free experiment in a dose-dependent manner, being significantly more active on COX-1 (IC50 4.9 µg/mL) than on COX-2 (IC50 10.4 µg/mL). The constituents identified as well as the pharmacological activities measured highlight the potential of C. cowellii leaves, increasing the interest in the implementation of conservation strategies for this species.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Polygonaceae/química , Tripanocidas/farmacología , Bacterias/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Hongos/efectos de los fármacos , Humanos , Pulmón/citología , Pulmón/efectos de los fármacos , Hojas de la Planta/química , Trypanosoma/efectos de los fármacos
13.
Plant Biotechnol J ; 18(3): 845-858, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31495052

RESUMEN

The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Erwinia amylovora/patogenicidad , Edición Génica , Malus/genética , Enfermedades de las Plantas/genética , ADN Bacteriano , Técnicas de Silenciamiento del Gen , Malus/microbiología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/microbiología
14.
Mol Plant Microbe Interact ; 32(2): 167-175, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29996678

RESUMEN

Fire blight, a devastating disease caused by the bacterium Erwinia amylovora, is a major threat to apple crop production. To improve our understanding of the fire blight disease and to identify potential strategies to control the pathogen, we studied the apple protein HIPM (for HrpN-interacting protein from Malus spp.), which has previously been identified as interacting with the E. amylovora effector protein HrpN. Transgenic apple plants were generated with reduced HIPM expression, using an RNA interference construct, and were subsequently analyzed for susceptibility to E. amylovora infection. Lines exhibiting a greater than 50% silencing of HIPM expression showed a significant decrease in susceptibility to E. amylovora infection. Indeed, a correlation between HIPM expression and E. amylovora infection was identified, demonstrating the crucial role of HIPM during fire blight disease progression. Furthermore, an apple oxygen-evolving enhancer-like protein (MdOEE) was identified via a yeast two-hybrid screen to interact with HIPM. This result was confirmed with bimolecular fluorescence complementation assays and leads to new hypotheses concerning the response mechanism of the plant to E. amylovora as well as the mechanism of infection of the bacterium. These results suggest that MdOEE and, particularly, HIPM are promising targets for further investigations toward the genetic improvement of apple.


Asunto(s)
Erwinia amylovora , Expresión Génica , Malus , Resistencia a la Enfermedad/genética , Erwinia amylovora/fisiología , Malus/genética , Malus/microbiología , Enfermedades de las Plantas/genética
15.
Mediators Inflamm ; 2019: 6173893, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341420

RESUMEN

Atherosclerosis is characterized by interaction between immune and vascular endothelial cells which is mediated by adhesion molecules occurring on the surface of the vascular endothelium leading to massive release of proinflammatory mediators. Ginkgo biloba L. (Ginkgoaceae) standardized extracts showing beneficial effects are commonly prepared by solvent extraction, and acetone is used according to the European Pharmacopoeia recommendations; the well-known Ginkgo biloba acetone extract EGb761® is the most clinically investigated. However, in some countries, the allowed amount of solvent is limited to ethanol, thus implying that the usage of a standardized Ginkgo biloba ethanol extract may be preferred in all those cases, such as for food supplements. The present paper investigates if ethanol and acetone extracts, with comparable standardization, may be considered comparable in terms of biological activity, focusing on the radical scavenging and anti-inflammatory activities. Both the extracts showed high inhibition of TNFα-induced VCAM-1 release (41.1-43.9 µg/mL), which was partly due to the NF-κB pathway impairment. Besides ROS decrease, cAMP increase following treatment with ginkgo extracts was addressed and proposed as further molecular mechanism responsible for the inhibition of endothelial E-selectin. No statistical difference was observed between the extracts. The present study demonstrates for the first time that ethanol and acetone extracts show comparable biological activities in human endothelial cell, thus providing new insights into the usage of ethanol extracts in those countries where restrictions in amount of acetone are present.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Acetona , Transporte Activo de Núcleo Celular , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Aterosclerosis/tratamiento farmacológico , AMP Cíclico/metabolismo , Selectina E/metabolismo , Etanol , Regulación de la Expresión Génica , Ginkgo biloba , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/tratamiento farmacológico , FN-kappa B/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
16.
Phytother Res ; 33(8): 2083-2093, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31250491

RESUMEN

Skin inflammatory diseases result from complex events that include dysregulation and abnormal expression of inflammatory mediators or their receptors in skin cells. The present study investigates the potential effect of a Cannabis sativa L. ethanolic extract standardized in cannabidiol as antiinflammatory agent in the skin, unraveling the molecular mechanisms in human keratinocytes and fibroblasts. The extract inhibited the release of mediators of inflammation involved in wound healing and inflammatory processes occurring in the skin. The mode of action involved the impairment of the nuclear factor-kappa B (NF-κB) pathway since the extract counteracted the tumor necrosis factor-alpha-induced NF-κB-driven transcription in both skin cell lines. Cannabis extract and cannabidiol showed different effects on the release of interleukin-8 and vascular endothelial growth factor, which are both mediators whose genes are dependent on NF-κB. The effect of cannabidiol on the NF-κB pathway and metalloproteinase-9 (MMP-9) release paralleled the effect of the extract thus making cannabidiol the major contributor to the effect observed. Down-regulation of genes involved in wound healing and skin inflammation was at least in part due to the presence of cannabidiol. Our findings provide new insights into the potential effect of Cannabis extracts against inflammation-based skin diseases.


Asunto(s)
Cannabidiol/química , Cannabis/química , Inflamación/tratamiento farmacológico , Extractos Vegetales/química , Piel/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Humanos , Piel/patología
17.
Pharmacol Res ; 134: 145-155, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29928974

RESUMEN

Gastritis is a widely spread inflammatory disease, mostly caused by Helicobacter pylori infection. Release of IL-8 by the stomach epithelium is a hallmark of gastritis and contributes to the amplification of the inflammatory state. Pharmacological modulation of IL-8 release is a strategy to relieve gastric inflammation and prevent more severe clinical outcomes. In search of nutraceuticals with potential anti-gastritis properties we used a bio-guided approach based on IL-8 secretion by gastric cells to characterize extracts from the fruits of different chestnut varieties. We found that the ability to inhibit IL-8 secretion correlated with the amount of proanthocyanidins and was associated to the not edible parts of chestnut in all the tested varieties. We also found that the anti-inflammatory activity is preserved upon mild thermal treatment and after in vitro simulated gastric digestion. By combining a robust bio-guided approach with a comprehensive analysis of the tannin fraction of chestnut extracts, we provide evidence for the potential use of chestnut-based nutraceuticals in human gastritis. The bioactive components of chestnut fruits inhibit IL-8 secretion by impairing NF-κB signaling and by other mechanisms, thus opening new applications of proanthocyanidins for inflammation-based diseases.


Asunto(s)
Aesculus/química , Antiinflamatorios/farmacología , Bioensayo/métodos , Suplementos Dietéticos , Mucosa Gástrica/efectos de los fármacos , Gastritis/tratamiento farmacológico , Extractos Vegetales/farmacología , Proantocianidinas/farmacología , Antiinflamatorios/aislamiento & purificación , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Frutas , Mucosa Gástrica/inmunología , Mucosa Gástrica/metabolismo , Gastritis/inmunología , Gastritis/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-8/metabolismo , Extractos Vegetales/aislamiento & purificación , Proantocianidinas/aislamiento & purificación , Vías Secretoras
18.
Pharmacol Res ; 111: 703-712, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27473819

RESUMEN

In the present study we chemically profiled tannin-enriched extracts from strawberries and tested their biological properties in a cell model of gastric inflammation. The chemical and biological features of strawberry tannins after in vitro simulated gastric digestion were investigated as well. The anti-inflammatory activities of pure strawberry tannins were assayed to get mechanistic insights. Tannin-enriched extracts from strawberries inhibit IL-8 secretion in TNFα-treated human gastric epithelial cells by dampening the NF-κB signaling. In vitro simulated gastric digestion slightly affected the chemical composition and the biological properties of strawberry tannins. By using pure compounds, we found that casuarictin may act as a pure NF-κB inhibitor while agrimoniin inhibits IL-8 secretion also acting on other biological targets; in our system procyanidin B1 prevents the TNFα-induced effects without interfering with the NF-κB pathway. We conclude that strawberry tannins, even after in vitro simulated gastric digestion, exert anti-inflammatory activities at nutritionally relevant concentrations.


Asunto(s)
Antiinflamatorios/farmacología , Células Epiteliales/efectos de los fármacos , Fragaria/química , Mucosa Gástrica/efectos de los fármacos , Gastritis/prevención & control , Interleucina-8/metabolismo , Extractos Vegetales/farmacología , Taninos/farmacología , Antiinflamatorios/aislamiento & purificación , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Mucosa Gástrica/inmunología , Mucosa Gástrica/metabolismo , Gastritis/genética , Gastritis/inmunología , Gastritis/metabolismo , Humanos , Interleucina-8/genética , Interleucina-8/inmunología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Regiones Promotoras Genéticas , Transducción de Señal/efectos de los fármacos , Taninos/aislamiento & purificación , Transfección , Factor de Necrosis Tumoral alfa/farmacología
20.
J Neurophysiol ; 112(8): 1984-98, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25057144

RESUMEN

The motor system may rely on a modular organization (muscle synergies activated in time) to execute different tasks. We investigated the common control features of walking and cycling in healthy humans from the perspective of muscle synergies. Three hypotheses were tested: 1) muscle synergies extracted from walking trials are similar to those extracted during cycling; 2) muscle synergies extracted from one of these motor tasks can be used to mathematically reconstruct the electromyographic (EMG) patterns of the other task; 3) muscle synergies of cycling can result from merging synergies of walking. A secondary objective was to identify the speed (and cadence) at which higher similarities emerged. EMG activity from eight muscles of the dominant leg was recorded in eight healthy subjects during walking and cycling at four matched cadences. A factorization technique [nonnegative matrix factorization (NNMF)] was applied to extract individual muscle synergy vectors and the respective activation coefficients behind the global muscular activity of each condition. Results corroborated hypotheses 2 and 3, showing that 1) four synergies from walking and cycling can successfully explain most of the EMG variability of cycling and walking, respectively, and 2) two of four synergies from walking appear to merge together to reconstruct one individual synergy of cycling, with best reconstruction values found for higher speeds. Direct comparison of the muscle synergy vectors of walking and the muscle synergy vectors of cycling (hypothesis 1) produced moderated values of similarity. This study provides supporting evidence for the hypothesis that cycling and walking share common neuromuscular mechanisms.


Asunto(s)
Músculo Esquelético/fisiología , Caminata/fisiología , Adulto , Algoritmos , Fenómenos Biomecánicos , Electromiografía , Prueba de Esfuerzo , Femenino , Humanos , Pierna/fisiología , Masculino , Actividad Motora , Red Nerviosa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA