Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(2): 372-387.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32610084

RESUMEN

Acute psychological stress has long been known to decrease host fitness to inflammation in a wide variety of diseases, but how this occurs is incompletely understood. Using mouse models, we show that interleukin-6 (IL-6) is the dominant cytokine inducible upon acute stress alone. Stress-inducible IL-6 is produced from brown adipocytes in a beta-3-adrenergic-receptor-dependent fashion. During stress, endocrine IL-6 is the required instructive signal for mediating hyperglycemia through hepatic gluconeogenesis, which is necessary for anticipating and fueling "fight or flight" responses. This adaptation comes at the cost of enhancing mortality to a subsequent inflammatory challenge. These findings provide a mechanistic understanding of the ontogeny and adaptive purpose of IL-6 as a bona fide stress hormone coordinating systemic immunometabolic reprogramming. This brain-brown fat-liver axis might provide new insights into brown adipose tissue as a stress-responsive endocrine organ and mechanistic insight into targeting this axis in the treatment of inflammatory and neuropsychiatric diseases.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Interleucina-6/metabolismo , Estrés Psicológico , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Encéfalo/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Gluconeogénesis , Hiperglucemia/metabolismo , Hiperglucemia/patología , Interleucina-6/sangre , Interleucina-6/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Interleucina-6/metabolismo , Proteína Desacopladora 1/deficiencia , Proteína Desacopladora 1/genética
2.
Cell ; 175(4): 1088-1104.e23, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318146

RESUMEN

Despite the known causality of copy-number variations (CNVs) to human neurodevelopmental disorders, the mechanisms behind each gene's contribution to the constellation of neural phenotypes remain elusive. Here, we investigated the 7q11.23 CNV, whose hemideletion causes Williams syndrome (WS), and uncovered that mitochondrial dysfunction participates in WS pathogenesis. Dysfunction is facilitated in part by the 7q11.23 protein DNAJC30, which interacts with mitochondrial ATP-synthase machinery. Removal of Dnajc30 in mice resulted in hypofunctional mitochondria, diminished morphological features of neocortical pyramidal neurons, and altered behaviors reminiscent of WS. The mitochondrial features are consistent with our observations of decreased integrity of oxidative phosphorylation supercomplexes and ATP-synthase dimers in WS. Thus, we identify DNAJC30 as an auxiliary component of ATP-synthase machinery and reveal mitochondrial maladies as underlying certain defects in brain development and function associated with WS.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Encéfalo/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Mitocondrias/metabolismo , Síndrome de Williams/genética , Animales , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Femenino , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa
4.
Front Neuroendocrinol ; 73: 101119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38184208

RESUMEN

Rates of alcohol use disorder (AUD) are increasing in men and women and there are high rates of concurrent posttraumatic stress disorder (PTSD) and AUD. AUD and PTSD synergistically increase symptomatology and negatively affect treatment outcomes; however, there are very limited pharmacological treatments for PTSD/AUD. Neurosteroids have been implicated in the underlying neurobiological mechanisms of both PTSD and AUD and may be a target for treatment development. This review details the past ten years of research on pregnenolone, progesterone, allopregnanolone, pregnanolone, estradiol, testosterone and dehydroepiandrosterone/dehydroepiandrosterone-sulfate (DHEA/DHEA-S) in the context of PTSD and AUD, including examination of trauma/alcohol-related variables, such as stress-reactivity. Emerging evidence that exogenous pregnenolone, progesterone, and allopregnanolone may be promising, novel interventions is also discussed. Specific emphasis is placed on examining the application of sex as a biological variable in this body of literature, given that women are more susceptible to both PTSD diagnoses and stress-related alcohol consumption.


Asunto(s)
Alcoholismo , Neuroesteroides , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/metabolismo , Trastornos por Estrés Postraumático/tratamiento farmacológico , Neuroesteroides/metabolismo , Alcoholismo/metabolismo , Alcoholismo/tratamiento farmacológico , Animales , Femenino , Masculino
5.
J Neurochem ; 167(1): 3-15, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37621094

RESUMEN

The neurotransmitter acetylcholine (ACh) plays a central role in the regulation of multiple cognitive and behavioral processes, including attention, learning, memory, motivation, anxiety, mood, appetite, and reward. As a result, understanding ACh dynamics in the brain is essential for elucidating the neural mechanisms underlying these processes. In vivo measurements of ACh in the brain have been challenging because of the low concentrations and rapid turnover of this neurotransmitter. Here, we review a number of techniques that have been developed to measure ACh levels in the brain in vivo. We follow this with a deeper focus on use of genetically encoded fluorescent sensors coupled with fiber photometry, an accessible technique that can be used to monitor neurotransmitter release with high temporal resolution and specificity. We conclude with a discussion of methods for analyzing fiber photometry data and their respective advantages and disadvantages. The development of genetically encoded fluorescent ACh sensors is revolutionizing the field of cholinergic signaling, allowing temporally precise measurement of ACh release in awake, behaving animals. Use of these sensors has already begun to contribute to a mechanistic understanding of cholinergic modulation of complex behaviors.


Asunto(s)
Acetilcolina , Encéfalo , Animales , Encéfalo/fisiología , Aprendizaje/fisiología , Neurotransmisores , Colinérgicos , Microdiálisis
6.
Mol Psychiatry ; 27(5): 2580-2589, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35418600

RESUMEN

N-methyl-D-aspartate receptor (NMDAR) modulators have recently received increased attention as potential therapeutics for posttraumatic stress disorder (PTSD). Here, we tested a novel NMDAR-positive modulator, NYX-783, in the following two rodent models of PTSD: an auditory fear-conditioning model and a single-prolonged stress (SPS) model. We examined the ability of NYX-783 to reduce subsequent fear-based behaviors by measuring enhanced fear extinction and reduced spontaneous recovery (spontaneous return of fear) in male mice. NYX-783 administration significantly reduced spontaneous recovery in both PTSD models and enhanced fear extinction in the SPS model. Furthermore, NYX-783 increased the NMDA-induced inward currents of excitatory and inhibitory neurons in the infralimbic medial prefrontal cortex (IL mPFC) and that the GluN2B subunit of NMDARs on pyramidal neurons in the IL mPFC is required for its effect on spontaneous recovery. The downstream expression of brain-derived neurotrophic factor was required for NYX-783 to achieve its behavioral effect. These results elucidate the cellular targets of NYX-783 and the molecular mechanisms underlying the inhibition of spontaneous recovery. These preclinical findings support the hypothesis that NYX-783 may have therapeutic potential for PTSD treatment and may be particularly useful for inhibiting spontaneous recovery.


Asunto(s)
Miedo , Receptores de N-Metil-D-Aspartato , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Masculino , Ratones , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Mol Psychiatry ; 27(3): 1829-1838, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34997190

RESUMEN

Acetylcholine (ACh) levels are elevated in actively depressed subjects. Conversely, antagonism of either nicotinic or muscarinic ACh receptors can have antidepressant effects in humans and decrease stress-relevant behaviors in rodents. Consistent with a role for ACh in mediating maladaptive responses to stress, brain ACh levels increase in response to stressful challenges, whereas systemically blocking acetylcholinesterase (AChE, the primary ACh degradative enzyme) elicits depression-like symptoms in human subjects, and selectively blocking AChE in the hippocampus increases relevant behaviors in rodents. We used an ACh sensor to characterize stress-evoked ACh release, then used chemogenetic, optogenetic and pharmacological approaches to determine whether cholinergic inputs from the medial septum/diagonal bands of Broca (MSDBB) or ChAT-positive neurons intrinsic to the hippocampus mediate stress-relevant behaviors in mice. Chemogenetic inhibition or activation of MSDBB cholinergic neurons did not result in significant behavioral effects, while inhibition attenuated the behavioral effects of physostigmine. In contrast, optogenetic stimulation of septohippocampal terminals or selective chemogenetic activation of ChAT-positive inputs to hippocampus increased stress-related behaviors. Finally, stimulation of sparse ChAT-positive hippocampal neurons increased stress-related behaviors in one ChAT-Cre line, which were attenuated by local infusion of cholinergic antagonists. These studies suggest that ACh signaling results in maladaptive behavioral responses to stress if the balance of signaling is shifted toward increased hippocampal engagement.


Asunto(s)
Acetilcolina , Acetilcolinesterasa , Acetilcolinesterasa/farmacología , Animales , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/farmacología , Colinérgicos/farmacología , Neuronas Colinérgicas/metabolismo , Hipocampo/metabolismo , Humanos , Ratones
8.
Mol Psychiatry ; 27(12): 4918-4927, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36050437

RESUMEN

The balance between excitatory and inhibitory (E/I) signaling is important for maintaining homeostatic function in the brain. Indeed, dysregulation of inhibitory GABA interneurons in the amygdala has been implicated in human mood disorders. We hypothesized that acetylcholine (ACh) signaling in the basolateral amygdala (BLA) might alter E/I balance resulting in changes in stress-sensitive behaviors. We therefore measured ACh release as well as activity of calmodulin-dependent protein kinase II (CAMKII)-, parvalbumin (PV)-, somatostatin (SOM)- and vasoactive intestinal protein (VIP)-expressing neurons in the BLA of awake, behaving male mice. ACh levels and activity of both excitatory and inhibitory BLA neurons increased when animals were actively coping, and decreased during passive coping, in the light-dark box, tail suspension and social defeat. Changes in neuronal activity preceded behavioral state transitions, suggesting that BLA activity may drive the shift in coping strategy. In contrast to exposure to escapable stressors, prolonging ACh signaling with a cholinesterase antagonist changed the balance of activity among BLA cell types, significantly increasing activity of VIP neurons and decreasing activity of SOM cells, with little effect on CaMKII or PV neurons. Knockdown of α7 or ß2-containing nAChR subtypes in PV and SOM, but not CaMKII or VIP, BLA neurons altered behavioral responses to stressors, suggesting that ACh signaling through nAChRs on GABA neuron subtypes contributes to stress-induced changes in behavior. These studies show that ACh modulates the GABAergic signaling network in the BLA, shifting the balance between SOM, PV, VIP and CaMKII neurons, which are normally activated coordinately during active coping in response to stress. Thus, prolonging ACh signaling, as occurs in response to chronic stress, may contribute to maladaptive behaviors by shifting the balance of inhibitory signaling in the BLA.


Asunto(s)
Acetilcolina , Complejo Nuclear Basolateral , Neuronas GABAérgicas , Estrés Psicológico , Animales , Masculino , Ratones , Acetilcolina/metabolismo , Amígdala del Cerebelo/metabolismo , Complejo Nuclear Basolateral/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Estrés Psicológico/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-37778006

RESUMEN

Clinical and preclinical studies have identified immunosuppressive effects of nicotine, with potential implications for treating nicotine addiction. Here we review how nicotine can regulate microglia, the resident macrophages in the brain, and corresponding effects of nicotine on neuroimmune signaling. There is significant evidence that activation of α7 nicotinic acetylcholine receptors (nAChRs) on microglia can trigger an anti-inflammatory cascade that alters microglial polarization and activity, cytokine release, and intracellular calcium concentrations, leading to neuroprotection. These anti-inflammatory effects of nicotine-dependent α7 nAChR signaling are lost during withdrawal, suggesting that neuroimmune signaling is potentiated during abstinence, and thus, heightened microglial activity may drive circuit disruption that contributes to withdrawal symptoms and hyperkatifeia. In sum, the clinical literature has highlighted immunomodulatory effects of nicotine and the potential for anti-inflammatory compounds to treat addiction. The preclinical literature investigating the underlying mechanisms points to a role of microglial engagement in the circuit dysregulation and behavioral changes that occur during nicotine addiction and withdrawal, driven, at least in part, by activation of α7 nAChRs on microglia. Specifically targeting microglial signaling may help alleviate withdrawal symptoms in people with nicotine dependence and help to promote abstinence.

10.
Pharmacol Res ; 191: 106745, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37011774

RESUMEN

Human epidemiological studies have identified links between nicotine intake and stress disorders, including anxiety, depression and PTSD. Here we review the clinical evidence for activation and desensitization of nicotinic acetylcholine receptors (nAChRs) relevant to affective disorders. We go on to describe clinical and preclinical pharmacological studies suggesting that nAChR function may be involved in the etiology of anxiety and depressive disorders, may be relevant targets for medication development, and may contribute to the antidepressant efficacy of non-nicotinic therapeutics. We then review what is known about nAChR function in a subset of limbic system areas (amygdala, hippocampus and prefrontal cortex), and how this contributes to stress-relevant behaviors in preclinical models that may be relevant to human affective disorders. Taken together, the preclinical and clinical literature point to a clear role for ACh signaling through nAChRs in regulation of behavioral responses to stress. Disruption of nAChR homeostasis is likely to contribute to the psychopathology observed in anxiety and depressive disorders. Targeting specific nAChRs may therefore be a strategy for medication development to treat these disorders or to augment the efficacy of current therapeutics.


Asunto(s)
Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Nicotina/farmacología , Amígdala del Cerebelo/metabolismo , Corteza Prefrontal/metabolismo , Ansiedad
11.
J Neurosci ; 41(3): 555-575, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33239400

RESUMEN

Neuronal and network-level hyperexcitability is commonly associated with increased levels of amyloid-ß (Aß) and contribute to cognitive deficits associated with Alzheimer's disease (AD). However, the mechanistic complexity underlying the selective loss of basal forebrain cholinergic neurons (BFCNs), a well-recognized characteristic of AD, remains poorly understood. In this study, we tested the hypothesis that the oligomeric form of amyloid-ß (oAß42), interacting with α7-containing nicotinic acetylcholine receptor (nAChR) subtypes, leads to subnucleus-specific alterations in BFCN excitability and impaired cognition. We used single-channel electrophysiology to show that oAß42 activates both homomeric α7- and heteromeric α7ß2-nAChR subtypes while preferentially enhancing α7ß2-nAChR open-dwell times. Organotypic slice cultures were prepared from male and female ChAT-EGFP mice, and current-clamp recordings obtained from BFCNs chronically exposed to pathophysiologically relevant level of oAß42 showed enhanced neuronal intrinsic excitability and action potential firing rates. These resulted from a reduction in action potential afterhyperpolarization and alterations in the maximal rates of voltage change during spike depolarization and repolarization. These effects were observed in BFCNs from the medial septum diagonal band and horizontal diagonal band, but not the nucleus basalis. Last, aged male and female APP/PS1 transgenic mice, genetically null for the ß2 nAChR subunit gene, showed improved spatial reference memory compared with APP/PS1 aged-matched littermates. Combined, these data provide a molecular mechanism supporting a role for α7ß2-nAChR in mediating the effects of oAß42 on excitability of specific populations of cholinergic neurons and provide a framework for understanding the role of α7ß2-nAChR in oAß42-induced cognitive decline.


Asunto(s)
Péptidos beta-Amiloides/genética , Prosencéfalo Basal/fisiopatología , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Sistema Nervioso Parasimpático/fisiopatología , Fragmentos de Péptidos/genética , Transducción de Señal/genética , Receptor Nicotínico de Acetilcolina alfa 7/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular , Fenómenos Electrofisiológicos , Femenino , Genotipo , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Neuronas/patología
12.
Mol Psychiatry ; 26(7): 3277-3291, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33070149

RESUMEN

Major depressive disorder (MDD) is associated with alterations of GABAergic interneurons, notably somatostatin (Sst) as well as parvalbumin (Pvalb), in cortical brain areas. In addition, the antidepressant effects of rapid-acting drugs are thought to occur via inhibition of GABA interneurons. However, the impact of these interneuron subtypes in affective behaviors as well as in the effects of rapid-acting antidepressants remains to be determined. Here, we used a Cre-dependent DREADD-chemogenetic approach to determine if inhibition of GABA interneurons in the mPFC of male mice is sufficient to produce antidepressant actions, and conversely if activation of these interneurons blocks the rapid and sustained antidepressant effects of scopolamine, a nonselective acetylcholine muscarinic receptor antagonist. Chemogenetic inhibition of all GABA interneurons (Gad1+), as well as Sst+ and Pvalb+ subtypes in the mPFC produced dose and time-dependent antidepressant effects in the forced swim and novelty suppressed feeding tests, and increased synaptic plasticity. In contrast, stimulation of Gad1, Sst, or Pvalb interneurons in mPFC abolished the effects of scopolamine and prevented scopolamine induction of synaptic plasticity. The results demonstrate that transient inhibition of GABA interneurons promotes synaptic plasticity that underlies rapid antidepressant responses.


Asunto(s)
Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor , Interneuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Ácido gamma-Aminobutírico , Animales , Trastorno Depresivo Mayor/tratamiento farmacológico , Masculino , Ratones , Parvalbúminas
13.
Eur J Neurosci ; 53(1): 114-125, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31821620

RESUMEN

Optimal acetylcholine (ACh) signaling is important for sustained attention and facilitates learning and memory. At the same time, human and animal studies have demonstrated increased levels of ACh in the brain during depressive episodes and increased symptoms of anxiety, depression, and reactivity to stress when ACh breakdown is impaired. While it is possible that the neuromodulatory roles of ACh in cognitive and affective processes are distinct, one possibility is that homeostatic levels of ACh signaling are necessary for appropriate learning, but overly high levels of cholinergic signaling promote encoding of stressful events, leading to the negative encoding bias that is a core symptom of depression. In this review, we outline this hypothesis and suggest potential neural pathways and underlying mechanisms that may support a role for ACh signaling in negative encoding bias.


Asunto(s)
Acetilcolina , Memoria , Animales , Encéfalo , Humanos , Aprendizaje , Vías Nerviosas
14.
Cogn Affect Behav Neurosci ; 20(6): 1173-1183, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32794101

RESUMEN

Seasonal variations in environmental light influence switches between moods in seasonal affective disorder (SAD) and bipolar disorder (BD), with depression arising during short active (SA) winter periods. Light-induced changes in behavior are also seen in healthy animals and are intensified in mice with reduced dopamine transporter expression. Specifically, decreasing the nocturnal active period (SA) of mice increases punishment perseveration and forced swim test (FST) immobility. Elevating acetylcholine with the acetylcholinesterase inhibitor physostigmine induces depression symptoms in people and increases FST immobility in mice. We used SA photoperiods and physostigmine to elevate acetylcholine prior to testing in a probabilistic learning task and the FST, including reversing subsequent deficits with nicotinic and scopolamine antagonists and targeted hippocampal adeno-associated viral administration. We confirmed that physostigmine also increases punishment sensitivity in a probabilistic learning paradigm. In addition, muscarinic and nicotinic receptor blockade attenuated both physostigmine-induced and SA-induced phenotypes. Finally, viral-mediated hippocampal expression of human AChE used to lower ACh levels blocked SA-induced elevation of FST immobility. These results indicate that increased hippocampal acetylcholine neurotransmission is necessary for the expression of SA exposure-induced behaviors. Furthermore, these studies support the potential for cholinergic treatments in depression. Taken together, these results provide evidence for hippocampal cholinergic mechanisms in contributing to seasonally depressed affective states induced by short day lengths.


Asunto(s)
Acetilcolina , Fotoperiodo , Acetilcolinesterasa , Animales , Hipocampo , Ratones , Fisostigmina/farmacología
15.
Nicotine Tob Res ; 22(2): 152-163, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30690485

RESUMEN

Despite health risks associated with smoking, up to 20% of the US population persist in this behavior; many smoke to control body weight or appetite, and fear of post-cessation weight gain can motivate continued smoking. Nicotine and tobacco use is associated with lower body weight, and cessation yields an average weight gain of about 4 kg, which is thought to reflect a return to the body weight of a typical nonsmoker. Nicotine replacement therapies can delay this weight gain but do not prevent it altogether, and the underlying mechanism for how nicotine is able to reduce weight is not fully understood. In rodent models, nicotine reduces weight gain, reduces food consumption, and alters energy expenditure, but these effects vary with duration and route of nicotine administration. Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti-related peptide and anorexigenic proopiomelanocortin neurons in the arcuate nucleus of the hypothalamus (ARC). Manipulation of nAChR subunit expression within the ARC can block the ability of nicotine and the nicotinic agonist cytisine from decreasing food intake; however, it is unknown exactly how this reduces food intake. This review summarizes the clinical and preclinical work on nicotine, food intake, and weight gain, then explores the feeding circuitry of the ARC and how it is regulated by nicotine. Finally, we propose a novel hypothesis for how nicotine acts on this hypothalamic circuit to reduce food intake. Implications: This review provides a comprehensive and updated summary of the clinical and preclinical work examining nicotine and food intake, as well as a summary of recent work examining feeding circuits of the hypothalamus. Synthesis of these two topics has led to new understanding of how nAChR signaling regulates food intake circuits in the hypothalamus.


Asunto(s)
Ingestión de Alimentos/fisiología , Hipotálamo/metabolismo , Nicotina/metabolismo , Agonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Transducción de Señal/fisiología , Animales , Ingestión de Alimentos/efectos de los fármacos , Humanos , Hipotálamo/efectos de los fármacos , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Transducción de Señal/efectos de los fármacos , Cese del Hábito de Fumar , Fumar Tabaco/metabolismo , Dispositivos para Dejar de Fumar Tabaco
16.
J Biol Chem ; 293(28): 11179-11194, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29802198

RESUMEN

Striatin-1, a subunit of the serine/threonine phosphatase PP2A, is preferentially expressed in neurons in the striatum. As a member of the striatin family of B subunits, striatin-1 is a core component together with PP2A of a multiprotein complex called STRIPAK, the striatin-interacting phosphatase and kinase complex. Little is known about the function of striatin-1 or the STRIPAK complex in the mammalian striatum. Here, we identify a selective role for striatin-1 in striatal neuron maturation. Using a small hairpin RNA (shRNA) knockdown approach in primary striatal neuronal cultures, we determined that reduced expression of striatin-1 results in increased dendritic complexity and an increased density of dendritic spines, classified as stubby spines. The dendritic phenotype was rescued by co-expression of a striatin-1 mutant construct insensitive to the knockdown shRNA but was not rescued by co-expression of PP2A- or Mob3-binding deficient striatin-1 constructs. Reduction of striatin-1 did not result in deficits in neuronal connectivity in this knockdown model, as we observed no abnormalities in synapse formation or in spontaneous excitatory postsynaptic currents. Thus, this study suggests that striatin-1 is a regulator of neuronal development in striatal neurons.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteína Fosfatasa 2/metabolismo , Columna Vertebral/citología , Columna Vertebral/metabolismo , Animales , Proteínas de Unión a Calmodulina/genética , Células Cultivadas , Femenino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal , Neuronas/metabolismo , Proteína Fosfatasa 2/genética , Subunidades de Proteína , Ratas , Ratas Sprague-Dawley
17.
Eur J Neurosci ; 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29791746

RESUMEN

Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti-related peptide (AgRP) and anorexigenic pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), yet nicotine and other nAChR agonists decrease food intake in mice. Viral-mediated knockdown of the ß4 nAChR subunit in all neuronal cell types in the ARC prevents the nicotinic agonist cytisine from decreasing food intake, but it is not known whether the ß4 subunit is selectively expressed in anorexigenic neurons or how other nAChR subtypes are distributed in this nucleus. Using translating ribosome affinity purification (TRAP) on ARC tissue from mice with ribosomes tagged in either AgRP or POMC cells, we examined nAChR subunit mRNA levels using real-time PCR. Both AgRP and POMC cells express a comparable panel of nAChR subunits with differences in α7 mRNA levels and a trend for difference in α4 levels, but no differences in ß4 expression. Immunoprecipitation of assembled nAChRs revealed that the ß4 subunit forms assembled channels with α3, ß2 and α4, but not other subunits found in the ARC. Finally, using cell type-selective, virally delivered small hairpin RNAs targeting either the ß4 or α7 subunit, we examined the contribution of each subunit in either AgRP or POMC cells to the behavioural response to nicotine, refining the understanding of nicotinic regulation of this feeding circuit. These experiments identify a more complex set of nAChRs expressed in ARC than in other hypothalamic regions. Thus, the ARC appears to be a particular target of nicotinic modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA