Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(6): 925-940, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37188941

RESUMEN

Aging accounts for increased risk and dismal outcome of ischemic stroke. Here, we investigated the impact of age-related changes in the immune system on stroke. Upon experimental stroke, compared with young mice, aged mice had increased neutrophil clogging of the ischemic brain microcirculation, leading to worse no-reflow and outcomes. Aged mice showed an enhanced granulopoietic response to stroke that led to the accumulation of CD101+CD62Llo mature and CD177hiCD101loCD62Llo and CD177loCD101loCD62Lhi immature atypical neutrophils in the blood, endowed with increased oxidative stress, phagocytosis and procoagulant features. Production of CXCL3 by CD62Llo neutrophils of the aged had a key role in the development and pathogenicity of aging-associated neutrophils. Hematopoietic stem cell rejuvenation reverted aging-associated neutropoiesis and improved stroke outcome. In elderly patients with ischemic stroke, single-cell proteome profile of blood leukocytes identified CD62Llo neutrophil subsets associated with worse reperfusion and outcome. Our results unveil how stroke in aging leads to a dysregulated emergency granulopoiesis impacting neurological outcome.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Neutrófilos , Leucocitos , Accidente Cerebrovascular/patología , Envejecimiento , Accidente Cerebrovascular Isquémico/patología
2.
Eur Heart J ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078224

RESUMEN

BACKGROUND AND AIMS: Patients suffering from Brugada syndrome (BrS) are predisposed to life-threatening cardiac arrhythmias. Diagnosis is challenging due to the elusive electrocardiographic (ECG) signature that often requires unconventional ECG lead placement and drug challenges to be detected. Although NaV1.5 sodium channel dysfunction is a recognized pathophysiological mechanism in BrS, only 25% of patients have detectable SCN5A variants. Given the emerging role of autoimmunity in cardiac ion channel function, this study explores the presence and potential impact of anti-NaV1.5 autoantibodies in BrS patients. METHODS: Using engineered HEK293A cells expressing recombinant NaV1.5 protein, plasma from 50 BrS patients and 50 controls was screened for anti-NaV1.5 autoantibodies via western blot, with specificity confirmed by immunoprecipitation and immunofluorescence. The impact of these autoantibodies on sodium current density and their pathophysiological effects were assessed in cellular models and through plasma injection in wild-type mice. RESULTS: Anti-NaV1.5 autoantibodies were detected in 90% of BrS patients vs. 6% of controls, yielding a diagnostic area under the curve of .92, with 94% specificity and 90% sensitivity. These findings were consistent across varying patient demographics and independent of SCN5A mutation status. Electrophysiological studies demonstrated a significant reduction specifically in sodium current density. Notably, mice injected with BrS plasma showed Brugada-like ECG abnormalities, supporting the pathogenic role of these autoantibodies. CONCLUSIONS: The study demonstrates the presence of anti-NaV1.5 autoantibodies in the majority of BrS patients, suggesting an immunopathogenic component of the syndrome beyond genetic predispositions. These autoantibodies, which could serve as additional diagnostic markers, also prompt reconsideration of the underlying mechanisms of BrS, as evidenced by their role in inducing the ECG signature of the syndrome in wild-type mice. These findings encourage a more comprehensive diagnostic approach and point to new avenues for therapeutic research.

3.
Neurobiol Dis ; 201: 106670, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303814

RESUMEN

Following ischemic stroke astrocytes undergo rapid molecular and functional changes that may accentuate tissue damage. In this study we identified the neurotrophin receptor TrkB in astrocytes as a key promoter of acute CNS injury in ischemic stroke. In fact, TrkB protein was strongly upregulated in astrocytes after human and experimental stroke, and transgenic mice lacking astrocyte TrkB displayed significantly smaller lesion volume, lower brain atrophy and better motor performance than control animals after transient middle cerebral artery occlusion. Neuropathological studies evidenced that edema directly correlated with astrogliosis and was limited in transgenic mice. Importantly, adaptive levels of the water channel AQP4 was astrocyte TrkB-dependent as AQP4 upregulation after stroke did not occur in mice lacking astrocyte TrkB. In vitro experiments with wild-type and/or TrkB-deficient astrocytes highlighted TrkB-dependent upregulation of AQP4 via activation of HIF1-alpha under hypoxia. Collectively, our observations indicate that TrkB signaling in astrocytes contributes to the development of edema and worsens cerebral ischemia.

4.
Glycoconj J ; 40(3): 343-354, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084126

RESUMEN

A subclass of the sialic acid family consists of intramolecular lactones that may function as key indicators of physiological and pathological states. However, the existence of these compounds in free form is highly improbable, since they are unlikely to exist in an aqueous solution due to their lability. Current analytical method used to detect them in biological fluids has not recognized their reactivity in solution and is prone to misidentification. However, recent advances in synthetic methods for 1,7-lactones have allowed the preparation of these sialic acid derivatives as authentic reference standards. We report here the development of a new HPLC-MS method for the simultaneous detection of the 1,7-lactone of N-acetylneuraminic acid, its γ-lactone derivative, and N-acetylneuraminic acid that overcomes the limitations of the previous analytical procedure for their identification.


Asunto(s)
Ácido N-Acetilneuramínico , Ácidos Siálicos , Ácidos Siálicos/análisis , Lactonas , Cromatografía Líquida de Alta Presión
5.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068978

RESUMEN

Brugada Syndrome (BrS) is a genetic heart condition linked to sudden cardiac death. Though the SCN5A gene is primarily associated with BrS, there is a lack of comprehensive studies exploring the connection between SCN5A mutation locations and the clinical presentations of the syndrome. This study aimed to address this gap and gain further understanding of the syndrome. The investigation classified 36 high-risk BrS patients based on SCN5A mutations within the transmembrane/structured (TD) and intra-domain loops (IDLs) lacking a 3D structure. We characterized the intrinsically disordered regions (IDRs) abundant in IDLs, using bioinformatics tools to predict IDRs and post-translational modifications (PTMs) in NaV1.5. Interestingly, it was found that current predictive tools often underestimate the impacts of mutations in IDLs and disordered regions. Moreover, patients with SCN5A mutations confined to IDL regions-previously deemed 'benign'-displayed clinical symptoms similar to those carrying 'damaging' variants. Our research illuminates the difficulty in stratifying patients based on SCN5A mutation locations, emphasizing the vital role of IDLs in the NaV1.5 channel's functioning and protein interactions. We advocate for caution when using predictive tools for mutation evaluation in these regions and call for the development of improved strategies in accurately assessing BrS risk.


Asunto(s)
Síndrome de Brugada , Humanos , Síndrome de Brugada/diagnóstico , Mutación , Fenotipo , Muerte Súbita Cardíaca , Corazón , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
6.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35806119

RESUMEN

Sarcopenia, an age-related decline in muscle mass and strength, is associated with metabolic disease and increased risk of cardiovascular morbidity and mortality. It is associated with decreased tissue vascularization and muscle atrophy. In this work, we investigated the role of the hypoxia inducible factor HIF-1α in sarcopenia. To this end, we obtained skeletal muscle biopsies from elderly sarcopenic patients and compared them with those from young individuals. We found a decrease in the expression of HIF-1α and its target genes in sarcopenia, as well as of PAX7, the major stem cell marker of satellite cells, whereas the atrophy marker MURF1 was increased. We also isolated satellite cells from muscle biopsies and cultured them in vitro. We found that a pharmacological activation of HIF-1α and its target genes caused a reduction in skeletal muscle atrophy and activation of PAX7 gene expression. In conclusion, in this work we found that HIF-1α plays a role in sarcopenia and is involved in satellite cell homeostasis. These results support further studies to test whether pharmacological reactivation of HIF-1α could prevent and counteract sarcopenia.


Asunto(s)
Sarcopenia , Anciano , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Mioblastos , Sarcopenia/metabolismo , Células Madre
7.
Int J Mol Sci ; 23(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35682772

RESUMEN

Coronary reperfusion strategies are life-saving approaches to restore blood flow to cardiac tissue after acute myocardial infarction (AMI). However, the sudden restoration of normal blood flow leads to ischemia and reperfusion injury (IRI), which results in cardiomyoblast death, irreversible tissue degeneration, and heart failure. The molecular mechanism of IRI is not fully understood, and there are no effective cardioprotective strategies to prevent it. In this study, we show that activation of sialidase-3, a glycohydrolytic enzyme that cleaves sialic acid residues from glycoconjugates, is cardioprotective by triggering RISK pro-survival signaling pathways. We found that overexpression of Neu3 significantly increased cardiomyoblast resistance to IRI through activation of HIF-1α and Akt/Erk signaling pathways. This raises the possibility of using Sialidase-3 activation as a cardioprotective reperfusion strategy after myocardial infarction.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Corazón , Humanos , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Neuraminidasa/metabolismo , Transducción de Señal
8.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361941

RESUMEN

Brugada Syndrome (BrS) is an inherited arrhythmogenic disorder with an increased risk of sudden cardiac death. Recent evidence suggests that BrS should be considered as an oligogenic or polygenic condition. Mutations in genes associated with BrS are found in about one-third of patients and they mainly disrupt the cardiac sodium channel NaV1.5, which is considered the main cause of the disease. However, voltage-gated channel's activity could be impacted by post-translational modifications such as sialylation, but their role in BrS remains unknown. Thus, we analyzed high risk BrS patients (n = 42) and healthy controls (n = 42) to assess an involvement of sialylation in BrS. Significant alterations in gene expression and protein sialylation were detected in Peripheral Blood Mononuclear Cells (PBMCs) from BrS patients. These changes were significantly associated with the phenotypic expression of the disease, as the size of the arrhythmogenic substrate and the duration of epicardial electrical abnormalities. Moreover, protein desialylation caused a reduction in the sodium current in an in vitro NaV1.5-overexpressing model. Dysregulation of the sialylation machinery provides definitive evidence that BrS affects extracardiac tissues, suggesting an underlying cause of the disease. Moreover, detection of these changes at the systemic level and their correlation with the clinical phenotype hint at the existence of a biomarker signature for BrS.


Asunto(s)
Síndrome de Brugada , Humanos , Síndrome de Brugada/diagnóstico , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Leucocitos Mononucleares/metabolismo , Fenotipo , Mutación , Electrocardiografía
9.
J Cell Physiol ; 236(7): 4857-4873, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33432663

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death globally and the number of cardiovascular patients, which is estimated to be over 30 million in 2018, represent a challenging issue for the healthcare systems worldwide. Therefore, the identification of novel molecular targets to develop new treatments is an ongoing challenge for the scientific community. In this context, sphingolipids (SLs) have been progressively recognized as potent bioactive compounds that play crucial roles in the modulation of several key biological processes, such as proliferation, differentiation, and apoptosis. Furthermore, SLs involvement in cardiac physiology and pathophysiology attracted much attention, since these molecules could be crucial in the development of CVDs. Among SLs, ceramide and sphingosine-1-phosphate (S1P) represent the most studied bioactive lipid mediators, which are characterized by opposing activities in the regulation of the fate of cardiac cells. In particular, maintaining the balance of the so-called ceramide/S1P rheostat emerged as an important novel therapeutical target to counteract CVDs. Thus, this review aims at critically summarizing the current knowledge about the antithetic roles of ceramide and S1P in cardiomyocytes dysfunctions, highlighting how the modulation of their metabolism through specific molecules, such as myriocin and FTY720, could represent a novel and interesting therapeutic approach to improve the management of CVDs.


Asunto(s)
Ceramidas/metabolismo , Trastornos Cerebrovasculares/patología , Lisofosfolípidos/metabolismo , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Anciano , Animales , Trastornos Cerebrovasculares/epidemiología , Trastornos Cerebrovasculares/mortalidad , Enfermedad Coronaria/patología , Humanos , Ratones , Enfermedad Arterial Periférica/patología , Embolia Pulmonar/patología , Cardiopatía Reumática/patología , Esfingosina/metabolismo , Trombosis de la Vena/patología
10.
Biochem J ; 477(17): 3401-3415, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32869836

RESUMEN

Cardiac fibrosis is a key physiological response to cardiac tissue injury to protect the heart from wall rupture. However, its progression increases heart stiffness, eventually causing a decrease in heart contractility. Unfortunately, to date, no efficient antifibrotic therapies are available to the clinic. This is primarily due to the complexity of the process, which involves several cell types and signaling pathways. For instance, the transforming growth factor beta (TGF-ß) signaling pathway has been recognized to be vital for myofibroblasts activation and fibrosis progression. In this context, complex sphingolipids, such as ganglioside GM3, have been shown to be directly involved in TGF-ß receptor 1 (TGF-R1) activation. In this work, we report that an induced up-regulation of sialidase Neu3, a glycohydrolytic enzyme involved in ganglioside cell homeostasis, can significantly reduce cardiac fibrosis in primary cultures of human cardiac fibroblasts by inhibiting the TGF-ß signaling pathway, ultimately decreasing collagen I deposition. These results support the notion that modulating ganglioside GM3 cell content could represent a novel therapeutic approach for cardiac fibrosis, warranting for further investigations.


Asunto(s)
Fibroblastos/metabolismo , Gangliósido G(M3)/metabolismo , Regulación Enzimológica de la Expresión Génica , Miocardio/metabolismo , Neuraminidasa/biosíntesis , Regulación hacia Arriba , Fibroblastos/patología , Fibrosis , Humanos , Miocardio/patología , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo
11.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445410

RESUMEN

Dilated cardiomyopathy (DCM) is the leading indication for heart transplantation. TTN gene truncating mutations account for about 25% of familial DCM cases and for 18% of sporadic DCM cases. The clinical relevance of specific variants in TTN has been difficult to determine because of the sheer size of the protein for which TTN encodes, as well as existing extensive genetic variation. Clinicians should communicate novel clinically-relevant variants and genotype-phenotype associations, so that animal studies evaluating the molecular mechanisms are always conducted with a focus on clinical significance. In the present study, we report for the first time the novel truncating heterozygous variant NM_001256850.1:c.72777_72783del (p.Phe24259Leufs*51) in the TTN gene and its association with DCM in a family with sudden death. This variant occurs in the A-band region of the sarcomere, in a known mutational hotspot of the gene. Truncating titin variants that occur in this region are the most common cause of DCM and have been rarely reported in asymptomatic individuals, differently from other pathogenic TTN gene variants. Further studies are warranted to better understand this particular clinically-relevant variant.


Asunto(s)
Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/genética , Conectina/genética , Muerte Súbita Cardíaca/etiología , Mutación del Sistema de Lectura , Biomarcadores , Cardiomiopatía Dilatada/diagnóstico , Análisis Mutacional de ADN , Diagnóstico por Imagen , Electrocardiografía , Femenino , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Pruebas de Función Cardíaca , Humanos , Masculino , Persona de Mediana Edad
12.
Cell Physiol Biochem ; 54(1): 110-125, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31999897

RESUMEN

BACKGROUND/AIMS: Cystic Fibrosis (CF) is an inherited disease associated with a variety of mutations affecting the CFTR gene. A deletion of phenylalanine 508 (F508) affects more than 70% of patients and results in unfolded proteins accumulation, originating a proteinopathy responsible for inflammation, impaired trafficking, altered metabolism, cholesterol and lipids accumulation, impaired autophagy at the cellular level. Lung inflammation has been extensively related to the accumulation of the lipotoxin ceramide. We recently proved that inhibition of ceramide synthesis by Myriocin reduces inflammation and ameliorates the defence response against pathogens infection, which is downregulated in CF. Here, we aim at demonstrating the mechanisms of Myriocin therapeutic effects in Cystic Fibrosis broncho-epithelial cells. METHODS: The effect of Myriocin treatment, on F508-CFTR bronchial epithelial cell line IB3-1 cells, was studied by evaluating the expression of key proteins and genes involved in autophagy and lipid metabolism, by western blotting and real time PCR. Moreover, the amount of glycerol-phospholipids, triglycerides, and cholesterols, sphingomyelins and ceramides were measured in treated and untreated cells by LC-MS. Finally, Sptlc1 was transiently silenced and the effect on ceramide content, autophagy and transcriptional activities was evaluated as above mentioned. RESULTS: We demonstrate that Myriocin tightly regulates metabolic function and cell resilience to stress. Myriocin moves a transcriptional program that activates TFEB, major lipid metabolism and autophagy regulator, and FOXOs, central lipid metabolism and anti-inflammatory/anti-oxidant regulators. The activity of these transcriptional factors is associated with the induction of PPARs nuclear receptors activity, whose targets are genes involved in lipid transport compartmentalization and oxidation. Transient silencing of SPTCL1 recapitulates the effects induced by Myriocin. CONCLUSION: Cystic Fibrosis bronchial epithelia accumulate lipids, exacerbating inflammation. Myriocin administration: i) activates the transcriptions of genes involved in enhancing autophagy-mediated stress clearance; ii) reduces the content of several lipid species and, at the same time, iii) enhances mitochondrial lipid oxidation. Silencing the expression of Sptlc1 reproduces Myriocin induced autophagy and transcriptional activities, demonstrating that the inhibition of sphingolipid synthesis drives a transcriptional program aimed at addressing cell metabolism towards lipid oxidation and at exploiting autophagy mediated clearance of stress. We speculate that regulating sphingolipid de novo synthesis can relieve from chronic inflammation, improving energy supply and anti-oxidant responses, indicating an innovative therapeutic strategy for CF.


Asunto(s)
Ácidos Grasos Monoinsaturados/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Esfingolípidos/metabolismo , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular , Colesterol/análisis , Cromatografía Líquida de Alta Presión , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Espectrometría de Masas , PPAR gamma/genética , PPAR gamma/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Serina C-Palmitoiltransferasa/antagonistas & inhibidores , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Esfingolípidos/análisis , Esfingomielinas/análisis
13.
Bioorg Med Chem ; 28(14): 115563, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32616179

RESUMEN

The optimization of the synthetic protocol to obtain the 3,4-unsaturated sialic acid derivatives, through the fine-tuning of both the Ferrier glycosylation conditions and the subsequent hydrolysis work-up, is herein reported. The accomplishment of the desired ß-anomers and some selected α-ones, in pure form, led us to evaluate their specific inhibitory activity towards NDV-HN and human sialidase NEU3. Importantly, the resulting data allowed the identification, for the first time, of three active 3,4-unsaturated sialic acid analogs, showing IC50 values against NDV-HN in the micromolar range.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Hemaglutininas/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Virus de la Enfermedad de Newcastle/efectos de los fármacos , Ácidos Siálicos/farmacología , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Hemaglutininas/metabolismo , Humanos , Estructura Molecular , Neuraminidasa/metabolismo , Virus de la Enfermedad de Newcastle/enzimología , Ácidos Siálicos/síntesis química , Ácidos Siálicos/química , Relación Estructura-Actividad
14.
J Org Chem ; 84(9): 5460-5470, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30892893

RESUMEN

Assigning the correct configuration at C2 in sialosides is a standing problem because of the absence of an anomeric hydrogen. All different empirical rules that have been proposed over the years lack general applicability. In particular, the correct configuration of several 3,4-unsaturated derivatives of N-acetylneuraminic acid (Neu5Ac), which have been recently shown to be novel sialidase/neuraminidase inhibitors, could only be tentatively assigned by similarity with the reported 3,4-unsaturated 2O-methyl sialosides. In this work, we overcome this problem as we devised a rapid synthetic method to unequivocally resolve the anomeric configuration of the 3,4-unsaturated Neu5Ac derivatives through the synthesis of the corresponding unreported unsaturated 1,7-lactones. Moreover, we discovered a diagnostic 13C nuclear magnetic resonance signal that allows the formulation of a new empirical rule for the direct assignment of the C2 stereochemistry of these molecules, even when only one of the two C2 epimers is available.


Asunto(s)
Lactonas/química , Ácido N-Acetilneuramínico/química , Estereoisomerismo
15.
FASEB J ; 31(5): 2146-2156, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28188178

RESUMEN

Regeneration of skeletal muscle is a complex process that requires the activation of quiescent adult stem cells, called satellite cells, which are resident in hypoxic niches in the tissue. Hypoxia has been recognized as a key factor to maintain stem cells in an undifferentiated state. Herein we report that hypoxia plays a fundamental role also in activating myogenesis. In particular, we found that the activation of the hypoxia-inducible factor (HIF)-1α under hypoxia, in murine skeletal myoblasts, leads to activation of MyoD through the noncanonical Wnt/ß-catenin pathway. Moreover, chemical inhibition of HIF-1α activity significantly reduces differentiation, thus confirming its crucial role in the process. Furthermore, hypoxia-preconditioned myoblasts, once induced to differentiate under normoxic conditions, tend to form hypertrophic myotubes. These results support the notion that hypoxia plays a pivotal role in activating the regeneration process by directly inducing myogenesis through HIF-1α. Although preliminary, these findings may suggest new perspective for novel therapeutic targets in the treatment of several muscle diseases.-Cirillo, F., Resmini, G., Ghiroldi, A., Piccoli, M., Bergante, S., Tettamanti, G., Anastasia, L. Activation of the hypoxia-inducible factor 1α promotes myogenesis through the noncanonical Wnt pathway, leading to hypertrophic myotubes.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Regeneración/fisiología , Vía de Señalización Wnt/fisiología , Animales , Diferenciación Celular/fisiología , Línea Celular , Hipertrofia/metabolismo , Ratones , Desarrollo de Músculos/fisiología , Mioblastos Esqueléticos/metabolismo , ARN Mensajero/metabolismo , beta Catenina/metabolismo
16.
Int J Mol Sci ; 19(10)2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332812

RESUMEN

Despite considerable improvements in the treatment of cardiovascular diseases, heart failure (HF) still represents one of the leading causes of death worldwide. Poor prognosis is mostly due to the limited regenerative capacity of the adult human heart, which ultimately leads to left ventricular dysfunction. As a consequence, heart transplantation is virtually the only alternative for many patients. Therefore, novel regenerative approaches are extremely needed, and several attempts have been performed to improve HF patients' clinical conditions by promoting the replacement of the lost cardiomyocytes and by activating cardiac repair. In particular, cell-based therapies have been shown to possess a great potential for cardiac regeneration. Different cell types have been extensively tested in clinical trials, demonstrating consistent safety results. However, heterogeneous efficacy data have been reported, probably because precise end-points still need to be clearly defined. Moreover, the principal mechanism responsible for these beneficial effects seems to be the paracrine release of antiapoptotic and immunomodulatory molecules from the injected cells. This review covers past and state-of-the-art strategies in cell-based heart regeneration, highlighting the advantages, challenges, and limitations of each approach.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Corazón/fisiología , Regeneración/fisiología , Animales , Ensayos Clínicos como Asunto , Humanos , Modelos Biológicos
17.
J Biol Chem ; 291(20): 10615-24, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-26987901

RESUMEN

NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking.


Asunto(s)
Neuraminidasa/metabolismo , Membrana Celular/enzimología , Chaperón BiP del Retículo Endoplásmico , Endosomas/enzimología , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Neuraminidasa/química , Neuraminidasa/genética , Pliegue de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Fisiológico , Regulación hacia Arriba
18.
Basic Res Cardiol ; 112(6): 68, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079873

RESUMEN

Cardiovascular diseases are the leading cause of death in the Western world. Unfortunately, current therapies are often only palliative, consequently essentially making heart transplantation necessary for many patients. However, several novel therapeutic approaches in the past two decades have yielded quite encouraging results. The generation of induced pluripotent stem cells, through the forced expression of stem cell-specific transcription factors, has inspired the most promising strategies for heart regeneration by direct reprogramming of cardiac fibroblasts into functional cardiomyocytes. Initial attempts at this reprogramming were conducted using a similar approach to the one used with transcription factors, but during years, novel strategies have been tested, e.g., miRNAs, recombinant proteins and chemical molecules. Although preliminary results on animal models are promising, the low reprogramming efficiency, as well as the incomplete maturation of the cardiomyocytes, still represents important obstacles. This review covers direct transdifferentiation strategies that have been proposed and developed and illustrates the pros and cons of each approach. Indeed, as described in the manuscript, there are still many unanswered questions and drawbacks that require a better understanding of the basic signaling pathways and transcription factor networks before functional cells, suitable for cardiac regeneration and safe for the patients, can be generated and used for human therapies.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Corazón/fisiología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Animales , Diferenciación Celular , Humanos , Regeneración
19.
Eur Heart J Suppl ; 18(Suppl E): E1-E7, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28533708

RESUMEN

The possibility of generating induced pluripotent stem cells from mouse embryonic fibroblasts and human adult fibroblasts has introduced new perspectives for possible therapeutic strategies to repair damaged hearts. However, obtaining large numbers of adult stem cells is still an ongoing challenge, and the safety of genetic reprogramming with lenti- or retro-viruses has several drawbacks not easy to be addressed. Furthermore, the majority of adult stem cell-based clinical trials for heart regeneration have had generally poor and controversial results. Nonetheless, it is now clear that the injected cells activate the growth and differentiation of progenitor cells that are already present in the heart. This is achieved by the release of signalling factors and/or exosomes carrying them. Along this line, chemistry may play a major role in developing new strategies for activating resident stem cells to regenerate the heart. In particular, this review focuses on small molecule approaches for cell reprogramming, cell differentiation, and activation of cell protection.

20.
Chemistry ; 21(41): 14614-29, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26397189

RESUMEN

Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/química , Citidina Monofosfato/análogos & derivados , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Receptores ErbB/química , Riñón/enzimología , Ácidos Siálicos/química , Ácidos Siálicos/síntesis química , Sialiltransferasas/antagonistas & inhibidores , Sialiltransferasas/química , Citidina Monofosfato/síntesis química , Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Humanos , Riñón/química , Sialiltransferasas/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA