Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Biol Chem ; 299(4): 104594, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898577

RESUMEN

Cluster of differentiation 47 (CD47) plays an important role in the pathophysiology of various diseases including atherosclerosis but its role in neointimal hyperplasia which contributes to restenosis has not been studied. Using molecular approaches in combination with a mouse vascular endothelial denudation model, we studied the role of CD47 in injury-induced neointimal hyperplasia. We determined that thrombin-induced CD47 expression both in human aortic smooth muscle cells (HASMCs) and mouse aortic smooth muscle cells. In exploring the mechanisms, we found that the protease-activated receptor 1-Gα protein q/11 (Gαq/11)-phospholipase Cß3-nuclear factor of activated T cells c1 signaling axis regulates thrombin-induced CD47 expression in HASMCs. Depletion of CD47 levels using its siRNA or interference of its function by its blocking antibody (bAb) blunted thrombin-induced migration and proliferation of HASMCs and mouse aortic smooth muscle cells. In addition, we found that thrombin-induced HASMC migration requires CD47 interaction with integrin ß3. On the other hand, thrombin-induced HASMC proliferation was dependent on CD47's role in nuclear export and degradation of cyclin-dependent kinase-interacting protein 1. In addition, suppression of CD47 function by its bAb rescued HASMC efferocytosis from inhibition by thrombin. We also found that vascular injury induces CD47 expression in intimal SMCs and that inhibition of CD47 function by its bAb, while alleviating injury-induced inhibition of SMC efferocytosis, attenuated SMC migration, and proliferation resulting in reduced neointima formation. Thus, these findings reveal a pathological role for CD47 in neointimal hyperplasia.


Asunto(s)
Antígeno CD47 , Reestenosis Coronaria , Miocitos del Músculo Liso , Animales , Humanos , Ratones , Antígeno CD47/antagonistas & inhibidores , Antígeno CD47/genética , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Hiperplasia/metabolismo , Hiperplasia/fisiopatología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/fisiopatología , Trombina/metabolismo , Lesiones del Sistema Vascular/fisiopatología , Regulación de la Expresión Génica/genética , Reestenosis Coronaria/fisiopatología
2.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35216248

RESUMEN

Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.


Asunto(s)
Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/antagonistas & inhibidores , Retina/diagnóstico por imagen , Retina/metabolismo , Animales , Antioxidantes/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Putrescina/análogos & derivados , Putrescina/farmacología , Transducción de Señal/efectos de los fármacos , Poliamino Oxidasa
3.
Arterioscler Thromb Vasc Biol ; 40(5): 1256-1274, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32160773

RESUMEN

OBJECTIVE: In view of our previous observations on differential expression of LMCD1 (LIM and cysteine-rich domains 1) in human versus rodents, we asked the question whether LMCD1 plays a species-specific role in the development of vascular lesions. Approach and Results: A combination of genetic, molecular, cellular, and disease models were used to test species-specific role of LMCD1 in the pathogenesis of vascular lesions. Here, we report species-specific regulation of LMCD1 expression in mediating vascular smooth muscle cell proliferation and migration during vascular wall remodeling in humans versus mice. Thrombin induced LMCD1 expression in human aortic smooth muscle cells but not mouse aortic smooth muscle cells via activation of Par1 (protease-activated receptor 1)-Gαq/11 (Gα protein q/11)-PLCß3 (phospholipase Cß3)-NFATc1 (nuclear factor of activated T cells 1) signaling. Furthermore, although LMCD1 mediates thrombin-induced proliferation and migration of both human aortic smooth muscle cells and mouse aortic smooth muscle cells via influencing E2F1 (E2F transcription factor 1)-mediated CDC6 (cell division cycle 6) expression and NFATc1-mediated IL (interleukin)-33 expression, respectively, in humans, it acts as an activator, and in mice, it acts as a repressor of these transcriptional factors. Interestingly, LMCD1 repressor activity was nullified by N-myristoyltransferase 2-mediated myristoylation in mouse. Besides, we found increased expression of LMCD1 in human stenotic arteries as compared to nonstenotic arteries. On the other hand, LMCD1 expression was decreased in neointimal lesions of mouse injured arteries as compared to noninjured arteries. CONCLUSIONS: Together, these observations reveal that LMCD1 acts as an activator and repressor of E2F1 and NFATc1 in humans and mice, respectively, in the induction of CDC6 and IL-33 expression during development of vascular lesions. Based on these findings, LMCD could be a potential target for drug development against restenosis and atherosclerosis in humans.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Factor de Transcripción E2F1/metabolismo , Interleucina-33/metabolismo , Proteínas con Dominio LIM/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción NFATC/metabolismo , Remodelación Vascular , Lesiones del Sistema Vascular/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Proteínas Co-Represoras/genética , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/genética , Femenino , Regulación de la Expresión Génica , Humanos , Interleucina-33/genética , Proteínas con Dominio LIM/genética , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Ácido Mirístico/metabolismo , Factores de Transcripción NFATC/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Especificidad de la Especie , Trombina/farmacología , Remodelación Vascular/efectos de los fármacos , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología
4.
Arterioscler Thromb Vasc Biol ; 39(6): 1212-1226, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31043075

RESUMEN

Objective- IL (interleukin)-33 has been shown to play a role in endothelial dysfunction, but its role in atherosclerosis is controversial. Therefore, the purpose of this study is to examine its role in vascular wall remodeling following injury. Approach and Results- Thrombin induced IL-33 expression in a time-dependent manner in human aortic smooth muscle cells and inhibition of its activity by its neutralizing antibody suppressed thrombin induced human aortic smooth muscle cell migration but not DNA synthesis. In exploring the mechanisms, we found that Par1 (protease-activated receptor 1), Gαq/11 (Gα protein q/11), PLCß3 (phospholipase Cß3), NFATc1 (nuclear factor of activated T cells), E2F1 (E2F transcription factor 1), and LMCD1 (LIM and cysteine-rich domains protein 1) are involved in thrombin-induced IL-33 expression and migration. Furthermore, we identified an NFAT-binding site at -100 nt that mediates thrombin-induced IL-33 promoter activity. Interestingly, we observed that NFATc1, E2F1, and LMCD1 bind to NFAT site in response to thrombin and found that LMCD1, while alone has no significant effect, enhanced either NFATc1 or E2F1-dependent IL-33 promoter activity. In addition, we found that guidewire injury induces IL-33 expression in SMC and its neutralizing antibodies substantially reduce SMC migration and neointimal growth in vivo. Increased expression of IL-33 was also observed in human atherosclerotic lesions as compared to arteries without any lesions. Conclusions- The above findings reveal for the first time that thrombin-induced human aortic smooth muscle cell migration and injury-induced neointimal growth require IL-33 expression. In addition, thrombin-induced IL-33 expression requires LMCD1 enhanced combinatorial activation of NFATc1 and E2F1.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Factor de Transcripción E2F1/metabolismo , Interleucina-33/metabolismo , Proteínas con Dominio LIM/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Factores de Transcripción NFATC/metabolismo , Neointima , Lesiones del Sistema Vascular/metabolismo , Animales , Sitios de Unión , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas Co-Represoras/genética , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/genética , Femenino , Arteria Femoral/efectos de los fármacos , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Arteria Femoral/patología , Células HEK293 , Humanos , Interleucina-33/genética , Proteínas con Dominio LIM/genética , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Factores de Transcripción NFATC/genética , Regiones Promotoras Genéticas , Transducción de Señal , Regulación hacia Arriba , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología
5.
Pharmacol Res ; 119: 289-302, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28237515

RESUMEN

Hypoadiponectinemia is associated with an increased risk of coronary artery disease. Although adiponectin replenishment mitigates neointimal hyperplasia and atherosclerosis in mouse models, adiponectin therapy has been hampered in a clinical setting due to its large molecular size. Recent studies demonstrate that AdipoRon (a small-molecule adiponectin receptor agonist) improves glycemic control in type 2 diabetic mice and attenuates postischemic cardiac injury in adiponectin-deficient mice, in part, through activation of AMP-activated protein kinase (AMPK). To date, it remains unknown as to whether AdipoRon regulates vascular smooth muscle cell (VSMC) proliferation, which plays a major role in neointima formation. In the present study, oral administration of AdipoRon (50mg/kg) in C57BL/6J mice significantly diminished arterial injury-induced neointima formation by ∼57%. Under in vitro conditions, AdipoRon treatment led to significant inhibition of platelet-derived growth factor (PDGF)-induced VSMC proliferation, DNA synthesis, and cyclin D1 expression. While AdipoRon induced a rapid and sustained activation of AMPK, it also diminished basal and PDGF-induced phosphorylation of mTOR and its downstream targets, including p70S6K/S6 and 4E-BP1. However, siRNA-mediated AMPK downregulation showed persistent inhibition of p70S6K/S6 and 4E-BP1 phosphorylation, indicating AMPK-independent effects for AdipoRon inhibition of mTOR signaling. In addition, AdipoRon treatment resulted in a sustained and transient decrease in PDGF-induced phosphorylation of Akt and ERK, respectively. Furthermore, PDGF receptor-ß tyrosine phosphorylation, which controls the phosphorylation state of Akt and ERK, was diminished upon AdipoRon treatment. Together, the present findings suggest that orally-administered AdipoRon has the potential to limit restenosis after angioplasty by targeting mTOR signaling independent of AMPK activation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Neointima/tratamiento farmacológico , Piperidinas/uso terapéutico , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Adiponectina/agonistas , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Arterias/efectos de los fármacos , Arterias/lesiones , Arterias/metabolismo , Arterias/patología , Línea Celular , Humanos , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Neointima/metabolismo , Neointima/patología , Receptores de Adiponectina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
6.
Mol Cancer Ther ; 23(4): 478-491, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37988559

RESUMEN

The histone lysine demethylases KDM4A-C are involved in physiologic processes including stem cell identity and self-renewal during development, DNA damage repair, and cell-cycle progression. KDM4A-C are overexpressed and associated with malignant cell behavior in multiple human cancers and are therefore potential therapeutic targets. Given the role of KDM4A-C in development and cancer, we aimed to test the potent, selective KDM4A-C inhibitor QC6352 on oncogenic cells of renal embryonic lineage. The anaplastic Wilms tumor cell line WiT49 and the tumor-forming human embryonic kidney cell line HEK293 demonstrated low nanomolar QC6352 sensitivity. The cytostatic response to QC6352 in WiT49 and HEK293 cells was marked by induction of DNA damage, a DNA repair-associated protein checkpoint response, S-phase cell-cycle arrest, profound reduction of ribosomal protein gene and rRNA transcription, and blockade of newly synthesized proteins. QC6352 caused reduction of KDM4A-C levels by a proteasome-associated mechanism. The cellular phenotype caused by QC6352 treatment of reduced migration, proliferation, tumor spheroid growth, DNA damage, and S-phase cell-cycle arrest was most closely mirrored by knockdown of KDM4A as determined by siRNA knockdown of KDM4A-C. QC6352 sensitivity correlated with high basal levels of ribosomal gene transcription in more than 900 human cancer cell lines. Targeting KDM4A may be of future therapeutic interest in oncogenic cells of embryonic renal lineage or cells with high basal expression of ribosomal protein genes.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos , Histona Demetilasas con Dominio de Jumonji , Proteínas Ribosómicas , Humanos , Células HEK293 , Histona Demetilasas con Dominio de Jumonji/genética , Línea Celular Tumoral , Riñón/metabolismo , Ribosomas/metabolismo
7.
Cell Rep Med ; 5(3): 101468, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508144

RESUMEN

Neuroblastoma with MYCN amplification (MNA) is a high-risk disease that has a poor survival rate. Neuroblastoma displays cellular heterogeneity, including more differentiated (adrenergic) and more primitive (mesenchymal) cellular states. Here, we demonstrate that MYCN oncoprotein promotes a cellular state switch in mesenchymal cells to an adrenergic state, accompanied by induction of histone lysine demethylase 4 family members (KDM4A-C) that act in concert to control the expression of MYCN and adrenergic core regulatory circulatory (CRC) transcription factors. Pharmacologic inhibition of KDM4 blocks expression of MYCN and the adrenergic CRC transcriptome with genome-wide induction of transcriptionally repressive H3K9me3, resulting in potent anticancer activity against neuroblastomas with MNA by inducing neuroblastic differentiation and apoptosis. Furthermore, a short-term KDM4 inhibition in combination with conventional, cytotoxic chemotherapy results in complete tumor responses of xenografts with MNA. Thus, KDM4 blockade may serve as a transformative strategy to target the adrenergic CRC dependencies in MNA neuroblastomas.


Asunto(s)
Histona Demetilasas , Neuroblastoma , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Línea Celular Tumoral , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Proteínas Oncogénicas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética
8.
Res Sq ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993649

RESUMEN

This study comprehensively evaluated the landscape of genetic and epigenetic events that predispose to synchronous bilateral Wilms tumor (BWT). We performed whole exome or whole genome sequencing, total-strand RNA-seq, and DNA methylation analysis using germline and/or tumor samples from 68 patients with BWT from St. Jude Children's Research Hospital and the Children's Oncology Group. We found that 25/61 (41%) of patients evaluated harbored pathogenic or likely pathogenic germline variants, with WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%) and the BRCA-related genes (5%) BRCA1, BRCA2, and PALB2 being most common. Germline WT1 variants were strongly associated with somatic paternal uniparental disomy encompassing the 11p15.5 and 11p13/WT1 loci and subsequent acquired pathogenic CTNNB1 variants. Somatic coding variants or genome-wide copy number alterations were almost never shared between paired synchronous BWT, suggesting that the acquisition of independent somatic variants leads to tumor formation in the context of germline or early embryonic, post-zygotic initiating events. In contrast, 11p15.5 status (loss of heterozygosity, loss or retention of imprinting) was shared among paired synchronous BWT in all but one case. The predominant molecular events for BWT predisposition include pathogenic germline variants or post-zygotic epigenetic hypermethylation at the 11p15.5 H19/ICR1 locus (loss of imprinting). This study demonstrates that post-zygotic somatic mosaicism for 11p15.5 hypermethylation/loss of imprinting is the single most common initiating molecular event predisposing to BWT. Evidence of somatic mosaicism for 11p15.5 loss of imprinting was detected in leukocytes of a cohort of BWT patients and long-term survivors, but not in unilateral Wilms tumor patients and long-term survivors or controls, further supporting the hypothesis that post-zygotic 11p15.5 alterations occurred in the mesoderm of patients who go on to develop BWT. Due to the preponderance of BWT patients with demonstrable germline or early embryonic tumor predisposition, BWT exhibits a unique biology when compared to unilateral Wilms tumor and therefore warrants continued refinement of its own treatment-relevant biomarkers which in turn may inform directed treatment strategies in the future.

9.
Nat Commun ; 14(1): 8006, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110397

RESUMEN

Developing synchronous bilateral Wilms tumor suggests an underlying (epi)genetic predisposition. Here, we evaluate this predisposition in 68 patients using whole exome or genome sequencing (n = 85 tumors from 61 patients with matched germline blood DNA), RNA-seq (n = 99 tumors), and DNA methylation analysis (n = 61 peripheral blood, n = 29 non-diseased kidney, n = 99 tumors). We determine the predominant events for bilateral Wilms tumor predisposition: 1)pre-zygotic germline genetic variants readily detectable in blood DNA [WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%), and BRCA-related genes (5%)] or 2)post-zygotic epigenetic hypermethylation at 11p15.5 H19/ICR1 that may require analysis of multiple tissue types for diagnosis. Of 99 total tumor specimens, 16 (16.1%) have 11p15.5 normal retention of imprinting, 25 (25.2%) have 11p15.5 copy neutral loss of heterozygosity, and 58 (58.6%) have 11p15.5 H19/ICR1 epigenetic hypermethylation (loss of imprinting). Here, we ascertain the epigenetic and genetic modes of bilateral Wilms tumor predisposition.


Asunto(s)
Neoplasias Renales , Tumor de Wilms , Niño , Humanos , Tumor de Wilms/genética , Tumor de Wilms/patología , Genotipo , Metilación de ADN/genética , ADN , Neoplasias Renales/genética , Neoplasias Renales/patología , Epigénesis Genética , Impresión Genómica
10.
Cancers (Basel) ; 14(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35406427

RESUMEN

Increased TERT mRNA is associated with disease relapse in favorable histology Wilms tumor (WT). This study sought to understand the mechanism of increased TERT expression by determining the association between TERT and WT1 and N-MYC, two proteins important in Wilms tumor pathogenesis that have been shown to regulate TERT expression. Three out of 45 (6.7%) WTs and the corresponding patient-derived xenografts harbored canonical gain-of-function mutations in the TERT promoter. This study identified near ubiquitous hypermethylation of the TERT promoter region in WT compared to normal kidney. WTs with biallelic inactivating mutations in WT1 (7/45, 15.6%) were found to have lower TERT expression by RNA-seq and qRT-PCR and lower telomerase activity determined by the telomerase repeat amplification protocol. Anaplastic histology and increased percentage of blastema were positively correlated with higher TERT expression and telomerase activity. In vitro shRNA knockdown of WT1 resulted in decreased expression of TERT, reduced colony formation, and decreased proliferation of WiT49, an anaplastic WT cell line with wild-type WT1. CRISPR-Cas9-mediated knockout of WT1 resulted in decreased expression of telomere-related gene pathways. However, an inducible Wt1-knockout mouse model showed no relationship between Wt1 knockout and Tert expression in normal murine nephrogenesis, suggesting that WT1 and TERT are coupled in transformed cells but not in normal kidney tissues. N-MYC overexpression resulted in increased TERT promoter activity and TERT transcription. Thus, multiple mechanisms of TERT activation are involved in WT and are associated with anaplastic histology and increased blastema. This study is novel because it identifies potential mechanisms of TERT activation in Wilms tumor that could be of therapeutic interests.

11.
Eur J Pharmacol ; 890: 173666, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33131722

RESUMEN

Imatinib, a PDGF receptor tyrosine kinase inhibitor, has been shown to suppress intimal hyperplasia in different animal models under normal metabolic milieu, diabetic, and/or hypercholesterolemic conditions. However, the impact of imatinib treatment on injury-induced neointimal hyperplasia has not yet been investigated in the setting of insulin resistance without frank diabetes. Using a mouse model of high fat diet (HFD)-induced insulin resistance and guidewire-induced arterial injury, the present study demonstrates that intraperitoneal administration of imatinib (25 mg/kg/day) for ~3 weeks resulted in a marked attenuation of neointimal hyperplasia (intima/media ratio) by ~78% (n = 6-9 per group; P < 0.05). Imatinib treatment also led to significant improvements in key metabolic parameters. In particular, imatinib improved insulin resistance and glucose tolerance, as revealed by complete inhibition of HFD-induced increase in HOMA-IR index and AUCIPGTT, respectively. In addition, imatinib treatment led to diminutions in HFD-induced increases in plasma total cholesterol and triglycerides by ~73% and ~59%, respectively. Furthermore, imatinib decreased HFD-induced increase in visceral fat accumulation by ~51% (as determined by epididymal white adipose tissue weight). Importantly, imatinib treatment in HFD-fed mice enhanced plasma levels of high-molecular-weight adiponectin by ~2-fold without affecting total adiponectin. However, there were no significant changes in mean arterial pressure in insulin-resistant state or after imatinib exposure, as measured by tail-cuff method. Together, the present findings suggest that targeting PDGF receptor tyrosine kinase using imatinib may provide a realistic treatment option to prevent injury-induced neointimal hyperplasia and diet-induced insulin resistance in obesity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Arteria Femoral/efectos de los fármacos , Mesilato de Imatinib/uso terapéutico , Resistencia a la Insulina , Neointima/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Arteria Femoral/metabolismo , Arteria Femoral/patología , Hiperplasia/tratamiento farmacológico , Hiperplasia/etiología , Hiperplasia/patología , Mesilato de Imatinib/farmacología , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neointima/metabolismo , Neointima/patología , Inhibidores de Proteínas Quinasas/farmacología
12.
Cell Death Differ ; 28(2): 780-798, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32968199

RESUMEN

ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1) play a vital role in promoting cholesterol efflux. Although, the dysregulation of these transporters was attributed as one of the mechanisms of atherogenesis, what renders their dysfunction is not well explored. Previously, we have reported that thrombin without having any effect on ABCG1 levels depletes ABCA1 levels affecting cholesterol efflux. In this study, we explored the mechanisms underlying thrombin-induced depletion of ABCA1 levels both in macrophages and smooth muscle cells. Under normal physiological conditions, COP9 signalosome subunit 3 (CSN3) was found to exist in complex with ABCA1 and in the presence of proatherogenic stimulants such as thrombin, ABCA1 was phosphorylated and dissociated from CSN3, leading to its degradation. Forced expression of CSN3 inhibited thrombin-induced ABCA1 ubiquitination and degradation, restored cholesterol efflux and suppressed foam cell formation. In Western diet (WD)-fed ApoE-/- mice, CSN3 was also disassociated from ABCA1 otherwise remained as a complex in Chow diet (CD)-fed ApoE-/- mice. Interestingly, depletion of CSN3 levels in WD-fed ApoE-/- mice significantly lowered ABCA1 levels, inhibited cholesterol efflux and intensified foam cell formation exacerbating the lipid laden atherosclerotic plaque formation. Mechanistic studies have revealed the involvement of Par1-Gα12-Pyk2-Gab1-PKCθ signaling in triggering phosphorylation of ABCA1 and its disassociation from CSN3 curtailing cholesterol efflux and amplifying foam cell formation. In addition, although both CSN3 and ABCA1 were found to be colocalized in human non-lesion coronary arteries, their levels were decreased as well as dissociated from each other in advanced atherosclerotic lesions. Together, these observations reveal for the first time an anti-atherogenic role of CSN3 and hence, designing therapeutic drugs protecting its interactions with ABCA1 could be beneficial against atherosclerosis.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteínas E/fisiología , Aterosclerosis/patología , Complejo del Señalosoma COP9/metabolismo , Macrófagos Peritoneales/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptor PAR-1/fisiología , Transportador 1 de Casete de Unión a ATP/genética , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Complejo del Señalosoma COP9/genética , Colesterol/metabolismo , Dieta Occidental/efectos adversos , Femenino , Células Espumosas/metabolismo , Células Espumosas/patología , Humanos , Macrófagos Peritoneales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas/genética , Células RAW 264.7 , Transducción de Señal , Trombina/metabolismo
13.
Redox Biol ; 47: 102163, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34655995

RESUMEN

12/15-lipoxygenase (12/15-LOX) plays an essential role in oxidative conversion of polyunsaturated fatty acids into various bioactive lipid molecules. Although 12/15-LOX's role in the pathophysiology of various human diseases has been well studied, its role in weight gain is controversial and poorly clarified. Here, we demonstrated the role of 12/15-LOX in high-fat diet (HFD)-induced weight gain in a mouse model. We found that 12/15-LOX mediates HFD-induced de novo lipogenesis (DNL), triglyceride (TG) biosynthesis and the transport of TGs from the liver to adipose tissue leading to white adipose tissue (WAT) expansion and weight gain via xanthine oxidase (XO)-dependent production of H2O2. 12/15-LOX deficiency leads to cullin2-mediated ubiquitination and degradation of XO, thereby suppressing H2O2 production, DNL and TG biosynthesis resulting in reduced WAT expansion and weight gain. These findings infer that manipulation of 12/15-LOX metabolism may manifest a potential therapeutic target for weight gain and obesity.


Asunto(s)
Lipogénesis , Xantina Oxidasa , Animales , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Dieta Alta en Grasa/efectos adversos , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Ratones , Triglicéridos/metabolismo , Aumento de Peso , Xantina Oxidasa/metabolismo
14.
J Clin Med ; 9(2)2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991839

RESUMEN

Diabetic retinopathy (DR) is a significant cause of blindness in working-age adults worldwide. Lack of effective strategies to prevent or reduce vision loss is a major problem. Since the degeneration of retinal neurons is an early event in the diabetic retina, studies to characterize the molecular mechanisms of diabetes-induced retinal neuronal damage and dysfunction are of high significance. We have demonstrated that spermine oxidase (SMOX), a mediator of polyamine oxidation is critically involved in causing neurovascular damage in the retina. The involvement of SMOX in diabetes-induced retinal neuronal damage is completely unknown. Utilizing the streptozotocin-induced mouse model of diabetes, the impact of the SMOX inhibitor, MDL 72527, on neuronal damage and dysfunction in the diabetic retina was investigated. Retinal function was assessed by electroretinography (ERG) and retinal architecture was evaluated using spectral domain-optical coherence tomography. Retinal cryosections were prepared for immunolabeling of inner retinal neurons and retinal lysates were used for Western blotting. We observed a marked decrease in retinal function in diabetic mice compared to the non-diabetic controls. Treatment with MDL 72527 significantly improved the ERG responses in diabetic retinas. Diabetes-induced retinal thinning was also inhibited by the MDL 72527 treatment. Our analysis further showed that diabetes-induced retinal ganglion cell damage and neurodegeneration were markedly attenuated by MDL 72527 treatment. These results strongly implicate SMOX in diabetes-induced retinal neurodegeneration and visual dysfunction.

15.
Redox Biol ; 24: 101180, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31022672

RESUMEN

In the present study, we show that cholesterol crystals induce NFκB activation, and ICAM1 and VCAM1 expression via xanthine oxidase-mediated H2O2 production and PP2A inhibition in influencing endothelial cell and monocyte interactions and all these adverse effects of cholesterol crystals could be attenuated by proresolving lipid mediator RvD1. In addition, feeding mice with cholesterol rich diet (CRD) increased xanthine oxidase expression, its activity and H2O2 production leading to PP2A inhibition, NFκB activation, and ICAM1 and VCAM1 expression and RvD1 attenuated all these effects of CRD substantially. Furthermore, peripheral blood mononuclear cells (PBMCs) from wild type mice when injected into mice that were fed with CRD or RvD1 + CRD showed increased leukocyte trafficking to arteries of CRD-fed mice as compared to RvD1 + CRD mice. These findings suggest that cholesterol crystals via promoting oxidant stress and inhibiting Ser/Thr phosphatases such as PP2A stimulate NFκB activation and ICAM1 and VCAM1 expression, and thereby enhance EC-monocyte interactions. In addition, proresolving lipid mediators such as RvD1 appear to exert their anti-inflammatory effects via countering the adverse effects of cholesterol crystals or CRD.


Asunto(s)
Colesterol/metabolismo , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/farmacología , Molécula 1 de Adhesión Intercelular/metabolismo , Monocitos/metabolismo , FN-kappa B/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Colesterol/química , Ácidos Docosahexaenoicos/farmacología , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Ratones , Oxidantes/metabolismo
16.
Cardiovasc Res ; 114(5): 668-678, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29360991

RESUMEN

Aims: Stromal interaction molecule 1 (STIM1) has emerged as an important player in the regulation of growth and proliferation of smooth muscle cells. Therefore, we hypothesized that STIM1 plays a crucial role in the maintenance of vascular integrity. The objective of this study was to evaluate whether reduced expression of STIM1 could modify the structure and function of the vasculature, leading to changes in blood pressure (BP). Methods and results: Smooth muscle-specific STIM1 knockout (sm-STIM1 KO) in mice resulted in arteries with ∼80% reduced STIM1 protein expression as compared with control mice. Mesenteric vessels exposed to increasing transmural pressure revealed attenuated myogenic reactivity and reduced vasoconstrictor response to phenylephrine in sm-STIM1 KO arteries. BP monitored via telemetry in sm-STIM1 KO and matched controls did not reveal differences. However, heart rate was significantly increased in sm-STIM1 KO mice. Consistent with these findings, plasma catecholamine levels were higher in sm-STIM1 KO than in control mice. Increased sympathetic activity in sm-STIM1 KO mice was unmasked by apha1-adrenergic receptor inhibitor (prazosin) and by treatment with the ganglion-blocking agent, hexamethonium. Both treatments resulted in a greater reduction of BP in sm-STIM1 KO mice. Cytoskeleton of cultured smooth muscle cells was studied by immunocytochemistry using specific antibodies. Staining for actin and vinculin revealed significant alterations in the cytoskeletal architecture of cells isolated from sm-STIM1 KO arteries. Finally, although sm-STIM1 KO mice were protected from Ang II-induced hypertension, such treatment resulted in significant fibrosis and a rapid deterioration of cardiac function. Conclusions: STIM1 deletion in smooth muscle results in attenuated myogenic tone and cytoskeletal defects with detrimental effects on the mechanical properties of arterial tissue. Although BP is maintained by elevated circulating catecholamine, this compensatory stimulation has a deleterious long-term effect on the myocardium.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Catecolaminas/sangre , Cardiopatías/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Molécula de Interacción Estromal 1/deficiencia , Vasoconstricción , Citoesqueleto de Actina/patología , Animales , Presión Sanguínea , Células Cultivadas , Fibrosis , Corazón/inervación , Cardiopatías/genética , Cardiopatías/patología , Cardiopatías/fisiopatología , Frecuencia Cardíaca , Ratones Noqueados , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Miocitos del Músculo Liso/patología , Transducción de Señal , Molécula de Interacción Estromal 1/genética , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología , Regulación hacia Arriba , Vinculina
17.
Front Neurosci ; 12: 956, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30686964

RESUMEN

Dysfunction of retinal neurons is a major cause of vision impairment in blinding diseases that affect children and adults worldwide. Cellular damage resulting from polyamine catabolism has been demonstrated to be a major player in many neurodegenerative conditions. We have previously shown that inhibition of polyamine oxidase (PAO) using MDL 72527 significantly reduced retinal neurodegeneration and cell death signaling pathways in hyperoxia-mediated retinopathy. In the present study, we investigated the impact of PAO inhibition in limiting retinal neurodegeneration in a model of NMDA (N-Methyl-D-aspartate)-induced excitotoxicity. Adult mice (8-10 weeks old) were given intravitreal injections (20 nmoles) of NMDA or NMLA (N-Methyl-L-aspartate, control). Intraperitoneal injection of MDL 72527 (40 mg/kg body weight/day) or vehicle (normal saline) was given 24 h before NMDA or NMLA treatment and continued until the animals were sacrificed (varied from 1 to 7 days). Analyses of retinal ganglion cell (RGC) layer cell survival was performed on retinal flatmounts. Retinal cryostat sections were prepared for immunostaining, TUNEL assay and retinal thickness measurements. Fresh frozen retinal samples were used for Western blotting analysis. A marked decrease in the neuronal survival in the RGC layer was observed in NMDA treated retinas compared to their NMLA treated controls, as studied by NeuN immunostaining of retinal flatmounts. Treatment with MDL 72527 significantly improved survival of NeuN positive cells in the NMDA treated retinas. Excitotoxicity induced neurodegeneration was also demonstrated by reduced levels of synaptophysin and degeneration of inner retinal neurons in NMDA treated retinas compared to controls. TUNEL labeling studies showed increased cell death in the NMDA treated retinas. However, treatment with MDL 72527 markedly reduced these changes. Analysis of signaling pathways during excitotoxic injury revealed the downregulation of pro-survival signaling molecules p-ERK and p-Akt, and the upregulation of a pro-apoptotic molecule BID, which were normalized with PAO inhibition. Our data demonstrate that inhibition of polyamine oxidase blocks NMDA-induced retinal neurodegeneration and promotes cell survival, thus offering a new therapeutic target for retinal neurodegenerative disease conditions.

18.
J Nutr Biochem ; 32: 73-84, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27142739

RESUMEN

Sulforaphane (SFN), a dietary phase-2 enzyme inducer that mitigates cellular oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) activation, is known to exhibit beneficial effects in the vessel wall. For instance, it inhibits vascular smooth muscle cell (VSMC) proliferation, a major event in atherosclerosis and restenosis after angioplasty. In particular, SFN attenuates the mitogenic and pro-inflammatory actions of platelet-derived growth factor (PDGF) and tumor necrosis factor-α (TNFα), respectively, in VSMCs. Nevertheless, the vasoprotective role of SFN has not been examined in the setting of obesity characterized by hyperleptinemia and insulin resistance. Using the mouse model of western diet-induced obesity, the present study demonstrates for the first time that subcutaneous delivery of SFN (0.5mg/Kg/day) for~3weeks significantly attenuates neointima formation in the injured femoral artery [↓ (decrease) neointima/media ratio by~60%; n=5-8]. This was associated with significant improvements in metabolic parameters, including ↓ weight gain by~52%, ↓ plasma leptin by~42%, ↓ plasma insulin by~63%, insulin resistance [↓ homeostasis model assessment of insulin resistance (HOMA-IR) index by~73%], glucose tolerance (↓ AUCGTT by~24%), and plasma lipid profile (e.g., ↓ triglycerides). Under in vitro conditions, SFN significantly decreased leptin-induced VSMC proliferation by~23% (n=5) with associated diminutions in leptin-induced cyclin D1 expression and the phosphorylation of p70S6kinase and ribosomal S6 protein (n=3-4). The present findings reveal that, in addition to improving systemic metabolic parameters, SFN inhibits leptin-induced VSMC proliferative signaling that may contribute in part to the suppression of injury-induced neointima formation in diet-induced obesity.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antioxidantes/uso terapéutico , Isotiocianatos/uso terapéutico , Leptina/antagonistas & inhibidores , Músculo Liso Vascular/efectos de los fármacos , Neointima/prevención & control , Obesidad/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Fármacos Antiobesidad/administración & dosificación , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Anticarcinógenos/administración & dosificación , Anticarcinógenos/farmacología , Anticarcinógenos/uso terapéutico , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Aorta , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Dieta Occidental/efectos adversos , Arteria Femoral/lesiones , Humanos , Inyecciones Subcutáneas , Resistencia a la Insulina , Isotiocianatos/administración & dosificación , Isotiocianatos/farmacología , Leptina/metabolismo , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/inmunología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Neointima/inmunología , Neointima/metabolismo , Neointima/patología , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/patología , Estrés Oxidativo/efectos de los fármacos , Sulfóxidos , Aumento de Peso/efectos de los fármacos
20.
Biochem Pharmacol ; 97(1): 77-88, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26212549

RESUMEN

Hypoxia is known to promote vasodilation of coronary vessels through several mediators including cardiac-derived adenosine and endothelium-derived prostanoids and nitric oxide. To date, the impact of endogenous glycogen depletion in vascular smooth muscle and the resultant alterations in cellular energy state (e.g., AMP-activated protein kinase, AMPK) on the contractile response to G protein-coupled receptor agonists (e.g., serotonin, 5-HT) has not yet been studied. In the present study, ex vivo exposure of endothelium-denuded human saphenous vein rings to hypoxic and glucose-deprived conditions during KCl-induced contractions for 30 min resulted in a marked depletion of endogenous glycogen by ∼80% (from ∼1.78 µmol/g under normoxia to ∼0.36 µmol/g under hypoxia). Importantly, glycogen-depleted HSV rings, which were maintained under hypoxia/reoxygenation and glucose-deprived conditions, exhibited significant increases in basal AMPK phosphorylation (∼6-fold ↑) and 5-HT-induced AMPK phosphorylation (∼19-fold ↑) with an accompanying suppression of 5-HT-induced maximal contractile response (∼68% ↓), compared with respective controls. Exposure of glycogen-depleted HSV rings to exogenous D-glucose, but not the inactive glucose analogs, prevented the exaggerated increase in 5-HT-induced AMPK phosphorylation and restored 5-HT-induced maximal contractile response. In addition, the ability of exogenous D-glucose to rescue cellular stress and impaired contractile function occurred through GLUT1-mediated but insulin/GLUT4-independent mechanisms. Together, the present findings from clinically-relevant human saphenous vein suggest that the loss of endogenous glycogen in vascular smooth muscle and the resultant accentuation of AMPK phosphorylation by GPCR agonists may constitute a yet another mechanism of metabolic vasodilation of coronary vessels in ischemic heart disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Alostasis , Glucosa/metabolismo , Glucógeno/metabolismo , Músculo Liso Vascular/metabolismo , Isquemia Miocárdica/metabolismo , Vena Safena/metabolismo , Anciano , Animales , Aorta Torácica/metabolismo , Transporte Biológico , Hipoxia de la Célula , Activación Enzimática , Femenino , Glucosa/análogos & derivados , Glucogenólisis , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Músculo Liso Vascular/enzimología , Isquemia Miocárdica/enzimología , Estrés Oxidativo , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas Wistar , Vena Safena/enzimología , Vasoconstricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA