Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Ecol Appl ; 34(2): e2934, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071693

RESUMEN

Species distribution models are vital to management decisions that require understanding habitat use patterns, particularly for species of conservation concern. However, the production of distribution maps for individual species is often hampered by data scarcity, and existing species maps are rarely spatially validated due to limited occurrence data. Furthermore, community-level maps based on stacked species distribution models lack important community assemblage information (e.g., competitive exclusion) relevant to conservation. Thus, multispecies, guild, or community models are often used in conservation practice instead. To address these limitations, we aimed to generate fine-scale, spatially continuous, nationwide maps for species represented in the North American Breeding Bird Survey (BBS) between 1992 and 2019. We developed ensemble models for each species at three spatial resolutions-0.5, 2.5, and 5 km-across the conterminous United States. We also compared species richness patterns from stacked single-species models with those of 19 functional guilds developed using the same data to assess the similarity between predictions. We successfully modeled 192 bird species at 5-km resolution, 160 species at 2.5-km resolution, and 80 species at 0.5-km resolution. However, the species we could model represent only 28%-56% of species found in the conterminous US BBSs across resolutions owing to data limitations. We found that stacked maps and guild maps generally had high correlations across resolutions (median = 84%), but spatial agreement varied regionally by resolution and was most pronounced between the East and West at the 5-km resolution. The spatial differences between our stacked maps and guild maps illustrate the importance of spatial validation in conservation planning. Overall, our species maps are useful for single-species conservation and can support fine-scale decision-making across the United States and support community-level conservation when used in tandem with guild maps. However, there remain data scarcity issues for many species of conservation concern when using the BBS for single-species models.


Asunto(s)
Aves , Ecosistema , Animales , Estados Unidos
2.
Oecologia ; 205(3-4): 597-612, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39042168

RESUMEN

Temperate woodlands are biodiverse natural communities threatened by land use change and fire suppression. Excluding historic disturbance regimes of periodic groundfires from woodlands causes degradation, resulting from changes in the plant community and subsequent biodiversity loss. Restoration, through prescribed fire and tree thinning, can reverse biodiversity losses, however, because the diversity of woodland species spans many taxa, efficiently quantifying biodiversity can be challenging. We assessed whether soundscapes in an eastern North American woodland reflect biodiversity changes during restoration measured in a concurrent multitrophic field study. In five restored and five degraded woodland sites in Wisconsin, USA, we sampled vegetation, measured arthropod biomass, conducted bird surveys, and recorded soundscapes for five days of every 15-day period from May to August 2022. We calculated two complementary acoustic indices: Soundscape Saturation, which focuses on all acoustically active species, and Acoustic Complexity Index (ACI), which was developed to study vocalizing birds. We used generalized additive models to predict both indices based on Julian date, time of day, and level of habitat degradation. We found that restored woodlands had higher arthropod biomass, and higher richness and abundance of breeding birds. Additionally, soundscapes in restored sites had higher mean Soundscape Saturation and higher mean ACI. Restored woodland acoustic indices exhibited greater magnitudes of daily and seasonal peaks. We conclude that woodland restoration results in higher soundscape saturation and complexity, due to greater richness and abundance of vocalizing animals. This bioacoustic signature of restoration offers a promising monitoring tool for efficiently documenting differences in woodland biodiversity.


Asunto(s)
Biodiversidad , Aves , Bosques , Animales , Quercus , Ecosistema , Biomasa
3.
Ecol Appl ; 32(6): e2624, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35404493

RESUMEN

Human activities alter ecosystems everywhere, causing rapid biodiversity loss and biotic homogenization. These losses necessitate coordinated conservation actions guided by biodiversity and species distribution spatial data that cover large areas yet have fine-enough resolution to be management-relevant (i.e., ≤5 km). However, most biodiversity products are too coarse for management or are only available for small areas. Furthermore, many maps generated for biodiversity assessment and conservation do not explicitly quantify the inherent tradeoff between resolution and accuracy when predicting biodiversity patterns. Our goals were to generate predictive models of overall breeding bird species richness and species richness of different guilds based on nine functional or life-history-based traits across the conterminous United States at three resolutions (0.5, 2.5, and 5 km) and quantify the tradeoff between resolution and accuracy and, hence, relevance for management of the resulting biodiversity maps. We summarized 18 years of North American Breeding Bird Survey data (1992-2019) and modeled species richness using random forests, including 66 predictor variables (describing climate, vegetation, geomorphology, and anthropogenic conditions), 20 of which we newly derived. Among the three spatial resolutions, the percentage variance explained ranged from 27% to 60% (median = 54%; mean = 57%) for overall species richness and 12% to 87% (median = 61%; mean = 58%) for our different guilds. Overall species richness and guild-specific species richness were best explained at 5-km resolution using ~24 predictor variables based on percentage variance explained, symmetric mean absolute percentage error, and root mean square error values. However, our 2.5-km-resolution maps were almost as accurate and provided more spatially detailed information, which is why we recommend them for most management applications. Our results represent the first consistent, occurrence-based, and nationwide maps of breeding bird richness with a thorough accuracy assessment that are also spatially detailed enough to inform local management decisions. More broadly, our findings highlight the importance of explicitly considering tradeoffs between resolution and accuracy to create management-relevant biodiversity products for large areas.


Asunto(s)
Aves , Ecosistema , Animales , Biodiversidad , Actividades Humanas , Humanos , Estados Unidos
4.
Ecol Appl ; 32(3): e2526, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34994033

RESUMEN

Forest biodiversity conservation and species distribution modeling greatly benefit from broad-scale forest maps depicting tree species or forest types rather than just presence and absence of forest, or coarse classifications. Ideally, such maps would stem from satellite image classification based on abundant field data for both model training and accuracy assessments, but such field data do not exist in many parts of the globe. However, different forest types and tree species differ in their vegetation phenology, offering an opportunity to map and characterize forests based on the seasonal dynamic of vegetation indices and auxiliary data. Our goal was to map and characterize forests based on both land surface phenology and climate patterns, defined here as forest phenoclusters. We applied our methodology in Argentina (2.8 million km2 ), which has a wide variety of forests, from rainforests to cold-temperate forests. We calculated phenology measures after fitting a harmonic curve of the enhanced vegetation index (EVI) time series derived from 30-m Sentinel 2 and Landsat 8 data from 2018-2019. For climate, we calculated land surface temperature (LST) from Band 10 of the thermal infrared sensor (TIRS) of Landsat 8, and precipitation from Worldclim (BIO12). We performed stratified X-means cluster classifications followed by hierarchical clustering. The resulting clusters separated well into 54 forest phenoclusters with unique combinations of vegetation phenology and climate characteristics. The EVI 90th percentile was more important than our climate and other phenology measures in providing separability among different forest phenoclusters. Our results highlight the potential of combining remotely sensed phenology measures and climate data to improve broad-scale forest mapping for different management and conservation goals, capturing functional rather than structural or compositional characteristics between and within tree species. Our approach results in classifications that go beyond simple forest-nonforest in areas where the lack of detailed ecological field data precludes tree species-level classifications, yet conservation needs are high. Our map of forest phenoclusters is a valuable tool for the assessment of natural resources, and the management of the environment at scales relevant for conservation actions.


Asunto(s)
Bosques , Árboles , Argentina , Biodiversidad , Clima
5.
Ecol Appl ; 30(8): e02157, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32358975

RESUMEN

Species loss is occurring globally at unprecedented rates, and effective conservation planning requires an understanding of landscape characteristics that determine biodiversity patterns. Habitat heterogeneity is an important determinant of species diversity, but is difficult to measure across large areas using field-based methods that are costly and logistically challenging. Satellite image texture analysis offers a cost-effective alternative for quantifying habitat heterogeneity across broad spatial scales. We tested the ability of texture measures derived from 30-m resolution Enhanced Vegetation Index (EVI) data to capture habitat heterogeneity and predict bird species richness across the conterminous United States. We used Landsat 8 satellite imagery from 2013-2017 to derive a suite of texture measures characterizing vegetation heterogeneity. Individual texture measures explained up to 21% of the variance in bird richness patterns in North American Breeding Bird Survey (BBS) data during the same time period. Texture measures were positively related to total breeding bird richness, but this relationship varied among forest, grassland, and shrubland habitat specialists. Multiple texture measures combined with mean EVI explained up to 41% of the variance in total bird richness, and models including EVI-based texture measures explained up to 10% more variance than those that included only EVI. Models that also incorporated topographic and land cover metrics further improved predictive performance, explaining up to 51% of the variance in total bird richness. A texture measure contributed predictive power and characterized landscape features that EVI and forest cover alone could not, even though the latter two were overall more important variables. Our results highlight the potential of texture measures for mapping habitat heterogeneity and species richness patterns across broad spatial extents, especially when used in conjunction with vegetation indices or land cover data. By generating 30-m resolution texture maps and modeling bird richness at a near-continental scale, we expand on previous applications of image texture measures for modeling biodiversity that were either limited in spatial extent or based on coarse-resolution imagery. Incorporating texture measures into broad-scale biodiversity models may advance our understanding of mechanisms underlying species richness patterns and improve predictions of species responses to rapid global change.


Asunto(s)
Aves , Ecosistema , Animales , Biodiversidad , Bosques , Imágenes Satelitales , Estados Unidos
6.
Ecol Appl ; 29(5): e01904, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30980571

RESUMEN

Public lands provide many ecosystem services and support diverse plant and animal communities. In order to provide these benefits in the future, land managers and policy makers need information about future climate change and its potential effects. In particular, weather extremes are key drivers of wildfires, droughts, and false springs, which in turn can have large impacts on ecosystems. However, information on future changes in weather extremes on public lands is lacking. Our goal was to compare historical (1950-2005) and projected mid-century (2041-2070) changes in weather extremes (fire weather, spring droughts, and false springs) on public lands. This case study looked at the lands managed by the U.S. Forest Service across the conterminous United States including 501 ranger district units. We analyzed downscaled projections of daily records from 19 Coupled Model Intercomparison Project 5 General Circulation Models for two climate scenarios, with either medium-low or high CO2 - equivalent concentration (RCPs 4.5 and 8.5). For each ranger district, we estimated: (1) fire potential, using the Keetch-Byram Drought Index; (2) frequency of spring droughts, using the Standardized Precipitation Index; and (3) frequency of false springs, using the extended Spring Indices. We found that future climates could substantially alter weather conditions across Forest Service lands. Under the two climate scenarios, increases in wildfire potential, spring droughts, and false springs were projected in 32-72%, 28-29%, and 13-16% of all ranger districts, respectively. Moreover, a substantial number of ranger districts (17-30%), especially in the Southwestern, Pacific Southwest, and Rocky Mountain regions, were projected to see increases in more than one type of weather extreme, which may require special management attention. We suggest that future changes in weather extremes could threaten the ability of public lands to provide ecosystem services and ecological benefits to society. Overall, our results highlight the value of spatially-explicit weather projections to assess future changes in key weather extremes for land managers and policy makers.


Asunto(s)
Sequías , Incendios , Animales , Ecosistema , Pradera , Estados Unidos , Tiempo (Meteorología)
7.
Glob Chang Biol ; 22(3): 1130-44, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26691721

RESUMEN

Climate change may drastically alter patterns of species distributions and richness, but predicting future species patterns in occurrence is challenging. Significant shifts in distributions have already been observed, and understanding these recent changes can improve our understanding of potential future changes. We assessed how past climate change affected potential breeding distributions for landbird species in the conterminous United States. We quantified the bioclimatic velocity of potential breeding distributions, that is, the pace and direction of change for each species' suitable climate space over the past 60 years. We found that potential breeding distributions for landbirds have shifted substantially with an average velocity of 1.27 km yr(-1) , about double the pace of prior distribution shift estimates across terrestrial systems globally (0.61 km yr(-1) ). The direction of shifts was not uniform. The majority of species' distributions shifted west, northwest, and north. Multidirectional shifts suggest that changes in climate conditions beyond mean temperature were influencing distributional changes. Indeed, precipitation variables that were proxies for extreme conditions were important variables across all models. There were winners and losers in terms of the area of distributions; many species experienced contractions along west and east distribution edges, and expansions along northern distribution edges. Changes were also reflected in the potential species richness, with some regions potentially gaining species (Midwest, East) and other areas potentially losing species (Southwest). However, the degree to which changes in potential breeding distributions are manifested in actual species richness depends on landcover. Areas that have become increasingly suitable for breeding birds due to changing climate are often those attractive to humans for agriculture and development. This suggests that many areas might have supported more breeding bird species had the landscape not been altered. Our study illustrates that climate change is not only a future threat, but something birds are already experiencing.


Asunto(s)
Distribución Animal , Aves/fisiología , Cambio Climático , Animales , Biodiversidad , Modelos Biológicos , Especificidad de la Especie , Factores de Tiempo , Estados Unidos
8.
Ecol Appl ; 26(8): 2718-2729, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27907262

RESUMEN

Climate conditions, such as temperature or precipitation, averaged over several decades strongly affect species distributions, as evidenced by experimental results and a plethora of models demonstrating statistical relations between species occurrences and long-term climate averages. However, long-term averages can conceal climate changes that have occurred in recent decades and may not capture actual species occurrence well because the distributions of species, especially at the edges of their range, are typically dynamic and may respond strongly to short-term climate variability. Our goal here was to test whether bird occurrence models can be predicted by either covariates based on short-term climate variability or on long-term climate averages. We parameterized species distribution models (SDMs) based on either short-term variability or long-term average climate covariates for 320 bird species in the conterminous USA and tested whether any life-history trait-based guilds were particularly sensitive to short-term conditions. Models including short-term climate variability performed well based on their cross-validated area-under-the-curve AUC score (0.85), as did models based on long-term climate averages (0.84). Similarly, both models performed well compared to independent presence/absence data from the North American Breeding Bird Survey (independent AUC of 0.89 and 0.90, respectively). However, models based on short-term variability covariates more accurately classified true absences for most species (73% of true absences classified within the lowest quarter of environmental suitability vs. 68%). In addition, they have the advantage that they can reveal the dynamic relationship between species and their environment because they capture the spatial fluctuations of species potential breeding distributions. With this information, we can identify which species and guilds are sensitive to climate variability, identify sites of high conservation value where climate variability is low, and assess how species' potential distributions may have already shifted due recent climate change. However, long-term climate averages require less data and processing time and may be more readily available for some areas of interest. Where data on short-term climate variability are not available, long-term climate information is a sufficient predictor of species distributions in many cases. However, short-term climate variability data may provide information not captured with long-term climate data for use in SDMs.


Asunto(s)
Aves , Cruzamiento , Cambio Climático , Animales , Biometría , Temperatura
9.
Ecol Appl ; 25(1): 160-71, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26255365

RESUMEN

Land-use change is a major cause of wildlife habitat loss. Understanding how changes in land-use policies and economic factors can impact future trends in land use and wildlife habitat loss is therefore critical for conservation efforts. Our goal here was to evaluate the consequences of future land-use changes under different conservation policies and crop market conditions on habitat loss for wildlife species in the southeastern United States. We predicted the rates of habitat loss for 336 terrestrial vertebrate species by 2051. We focused on habitat loss due to the expansion of urban, crop, and pasture. Future land-use changes following business-as-usual conditions resulted in relatively low rates of wildlife habitat loss across the entire Southeast, but some ecoregions and species groups experienced much higher habitat loss than others. Increased crop commodity prices exacerbated wildlife habitat loss in most ecoregions, while the implementation of conservation policies (reduced urban sprawl, and payments for land conservation) reduced the projected habitat loss in some regions, to a certain degree. Overall, urban and crop expansion were the main drivers of habitat loss. Reptiles and wildlife species associated with open vegetation (grasslands, open woodlands) were the species groups most vulnerable to future land-use change. Effective conservation of wildlife habitat in the Southeast should give special consideration to future land-use changes, regional variations, and the forces that could shape land-use decisions.


Asunto(s)
Animales Salvajes , Ecosistema , Vertebrados/fisiología , Agroquímicos , Animales , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Actividades Humanas , Modelos Teóricos , Sudeste de Estados Unidos , Factores de Tiempo , Urbanización
10.
Ecol Appl ; 25(8): 2051-68, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26910939

RESUMEN

Rapid and ongoing change creates novelty in ecosystems everywhere, both when comparing contemporary systems to their historical baselines, and predicted future systems to the present. However, the level of novelty varies greatly among places. Here we propose a formal and quantifiable definition of abiotic and biotic novelty in ecosystems, map abiotic novelty globally, and discuss the implications of novelty for the science of ecology and for biodiversity conservation. We define novelty as the degree of dissimilarity of a system, measured in one or more dimensions relative to a reference baseline, usually defined as either the present or a time window in the past. In this conceptualization, novelty varies in degree, it is multidimensional, can be measured, and requires a temporal and spatial reference. This definition moves beyond prior categorical definitions of novel ecosystems, and does not include human agency, self-perpetuation, or irreversibility as criteria. Our global assessment of novelty was based on abiotic factors (temperature, precipitation, and nitrogen deposition) plus human population, and shows that there are already large areas with high novelty today relative to the early 20th century, and that there will even be more such areas by 2050. Interestingly, the places that are most novel are often not the places where absolute changes are largest; highlighting that novelty is inherently different from change. For the ecological sciences, highly novel ecosystems present new opportunities to test ecological theories, but also challenge the predictive ability of ecological models and their validation. For biodiversity conservation, increasing novelty presents some opportunities, but largely challenges. Conservation action is necessary along the entire continuum of novelty, by redoubling efforts to protect areas where novelty is low, identifying conservation opportunities where novelty is high, developing flexible yet strong regulations and policies, and establishing long-term experiments to test management approaches. Meeting the challenge of novelty will require advances in the science of ecology, and new and creative. conservation approaches.


Asunto(s)
Ecosistema , Adaptación Fisiológica , Animales , Cambio Climático , Conservación de los Recursos Naturales , Ecología/métodos , Humanos , Especies Introducidas , Modelos Biológicos , Plantas , Factores de Tiempo
11.
Ecol Appl ; 24(6): 1445-62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-29160666

RESUMEN

Protected areas are a cornerstone for biodiversity conservation, but they also provide amenities that attract housing development on inholdings and adjacent private lands. We explored how this development affects biodiversity within and near protected areas among six ecological regions throughout the United States. We quantified the effect of housing density within, at the boundary, and outside protected areas, and natural land cover within protected areas, on the proportional abundance and proportional richness of three avian guilds within protected areas. We developed three guilds from the North American Breeding Bird Survey, which included Species of Greatest Conservation Need, land cover affiliates (e.g., forest breeders), and synanthropic species associated with urban environments. We gathered housing density data for the year 2000 from the U.S. Census Bureau, and centered the bird data on this year. We obtained land cover data from the 2001 National Land Cover Database, and we used single- and multiple-variable analyses to address our research question. In all regions, housing density within protected areas was positively associated with the proportional abundance or proportional richness of synanthropes, and negatively associated with the proportional abundance or proportional richness of Species of Greatest Conservation Need. These relationships were strongest in the eastern forested regions and the central grasslands, where more than 70% and 45%, respectively, of the variation in the proportional abundance of synanthropes and Species of Greatest Conservation Need were explained by housing within protected areas. Furthermore, in most regions, housing density outside protected areas was positively associated with the proportional abundance or proportional richness of synanthropes and negatively associated with the proportional abundance of land cover affiliates and Species of Greatest Conservation Need within protected areas. However, these effects were weaker than housing within protected areas. Natural land cover was high with little variability within protected areas, and consequently, was less influential than housing density within or outside protected areas explaining the proportional abundance or proportional richness of the avian guilds. Our results indicate that housing development within, at the boundary, and outside protected areas impacts avian community structure within protected areas throughout the United States.


Asunto(s)
Biodiversidad , Aves , Conservación de los Recursos Naturales , Vivienda , Animales , Actividades Humanas , Densidad de Población , Estados Unidos
12.
Conserv Biol ; 28(5): 1291-301, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24811862

RESUMEN

As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale-dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated whether there is also a systematic temporal trend in the relationship between bird biodiversity and housing development. We used linear regression to examine associations between forest bird species richness and housing growth in the conterminous United States over 30 years. Our data sources were the North American Breeding Bird Survey and the 2000 decennial U.S. Census. In the 9 largest forested ecoregions, housing density increased continually over time. Across the conterminous United States, the association between bird species richness and housing density was positive for virtually all guilds except ground nesting birds. We found a systematic trajectory of declining bird species richness as housing increased through time. In more recently developed ecoregions, where housing density was still low, the association with bird species richness was neutral or positive. In ecoregions that were developed earlier and where housing density was highest, the association of housing density with bird species richness for most guilds was negative and grew stronger with advancing decades. We propose that in general the relationship between human settlement and biodiversity over time unfolds as a 2-phase process. The first phase is apparently innocuous; associations are positive due to coincidence of low-density housing with high biodiversity. The second phase is highly detrimental to biodiversity, and increases in housing density are associated with biodiversity losses. The long-term effect on biodiversity depends on the final housing density. This general pattern can help unify our understanding of the relationship of human encroachment and biodiversity response.


Asunto(s)
Biodiversidad , Aves/fisiología , Bosques , Animales , Humanos , Dinámica Poblacional , Factores de Tiempo , Estados Unidos
13.
Proc Natl Acad Sci U S A ; 107(2): 940-5, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20080780

RESUMEN

Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern "Noah's Ark." Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Vivienda/estadística & datos numéricos , Anciano , Conducción de Automóvil/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Agricultura Forestal/tendencias , Vivienda/tendencias , Humanos , Jubilación/estadística & datos numéricos , Estados Unidos , Vida Silvestre
14.
Science ; 382(6671): 702-707, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943916

RESUMEN

Wildfire risks to homes are increasing, especially in the wildland-urban interface (WUI), where wildland vegetation and houses are in close proximity. Notably, we found that more houses are exposed to and destroyed by grassland and shrubland fires than by forest fires in the United States. Destruction was more likely in forest fires, but they burned less WUI. The number of houses within wildfire perimeters has doubled since the 1990s because of both housing growth (47% of additionally exposed houses) and more burned area (53%). Most exposed houses were in the WUI, which grew substantially during the 2010s (2.6 million new WUI houses), albeit not as rapidly as before. Any WUI growth increases wildfire risk to houses though, and more fires increase the risk to existing WUI houses.


Asunto(s)
Entorno Construido , Bosques , Pradera , Incendios Forestales , Entorno Construido/estadística & datos numéricos , Estados Unidos
15.
Sci Total Environ ; 857(Pt 3): 159603, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36272474

RESUMEN

As climate change alters the global environment, it is critical to understand the relationship between shifting climate suitability and species distributions. Key questions include whether observed changes in population abundance are aligned with the velocity and direction of shifts predicted by climate suitability models and if the responses are consistent among species with similar ecological traits. We examined the direction and velocity of the observed abundance-based distribution centroids compared with the model-predicted bioclimatic distribution centroids of 250 bird species across the United States from 1969 to 2011. We hypothesized that there is a significant positive correlation in both direction and velocity between the observed and the modeled shifts. We then tested five additional hypotheses that predicted differential shifting velocity based on ecological adaptability and climate change exposure. Contrary to our hypotheses, we found large differences between the observed and modeled shifts among all studied bird species and within specific ecological guilds. However, temperate migrants and habitat generalist species tended to have higher velocity of observed shifts than other species. Neotropical migratory and wetland birds also had significantly different observed velocities than their counterparts, which may be due to their climate change exposure. The velocity based on modeled bioclimatic suitability did not exhibit significant differences among most guilds. Boreal forest birds were the only guild with significantly faster modeled-shifts than the other groups, suggesting an elevated conservation risk for high latitude and altitude species. The highly idiosyncratic species responses to climate and the mismatch between shifts in modeled and observed distribution centroids highlight the challenge of predicting species distribution change based solely on climate suitability and the importance of non-climatic factors traits in shaping species distributions.


Asunto(s)
Aves , Cambio Climático , Animales , Distribución Animal , Aves/fisiología , Ecosistema , América del Norte
16.
Conserv Biol ; 26(5): 883-93, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22809426

RESUMEN

Land-use change is affecting Earth's capacity to support both wild species and a growing human population. The question is how best to manage landscapes for both species conservation and economic output. If large areas are protected to conserve species richness, then the unprotected areas must be used more intensively. Likewise, low-intensity use leaves less area protected but may allow wild species to persist in areas that are used for market purposes. This dilemma is present in policy debates on agriculture, housing, and forestry. Our goal was to develop a theoretical model to evaluate which land-use strategy maximizes economic output while maintaining species richness. Our theoretical model extends previous analytical models by allowing land-use intensity on unprotected land to influence species richness in protected areas. We devised general models in which species richness (with modified species-area curves) and economic output (a Cobb-Douglas production function) are a function of land-use intensity and the proportion of land protected. Economic output increased as land-use intensity and extent increased, and species richness responded to increased intensity either negatively or following the intermediate disturbance hypothesis. We solved the model analytically to identify the combination of land-use intensity and protected area that provided the maximum amount of economic output, given a target level of species richness. The land-use strategy that maximized economic output while maintaining species richness depended jointly on the response of species richness to land-use intensity and protection and the effect of land use outside protected areas on species richness within protected areas. Regardless of the land-use strategy, species richness tended to respond to changing land-use intensity and extent in a highly nonlinear fashion.


Asunto(s)
Agricultura , Biodiversidad , Conservación de los Recursos Naturales/métodos , Agricultura Forestal , Urbanización , Conservación de los Recursos Naturales/economía , Ecosistema , Actividades Humanas , Humanos , Modelos Biológicos , Densidad de Población
17.
Conserv Biol ; 26(5): 821-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22731630

RESUMEN

Changes in land use and land cover have affected and will continue to affect biological diversity worldwide. Yet, understanding the spatially extensive effects of land-cover change has been challenging because data that are consistent over space and time are lacking. We used the U.S. National Land Cover Dataset Land Cover Change Retrofit Product and North American Breeding Bird Survey data to examine land-cover change and its associations with diversity of birds with principally terrestrial life cycles (landbirds) in the conterminous United States. We used mixed-effects models and model selection to rank associations by ecoregion. Land cover in 3.22% of the area considered in our analyses changed from 1992 to 2001, and changes in species richness and abundance of birds were strongly associated with land-cover changes. Changes in species richness and abundance were primarily associated with changes in nondominant types of land cover, yet in many ecoregions different types of land cover were associated with species richness than were associated with abundance. Conversion of natural land cover to anthropogenic land cover was more strongly associated with changes in bird species richness and abundance than persistence of natural land cover in nearly all ecoregions and different covariates were most strongly associated with species richness than with abundance in 11 of 17 ecoregions. Loss of grassland and shrubland affected bird species richness and abundance in forested ecoregions. Loss of wetland was associated with bird abundance in forested ecoregions. Our findings highlight the value of understanding changes in nondominant land cover types and their association with bird diversity in the United States.


Asunto(s)
Biodiversidad , Aves , Conservación de los Recursos Naturales , Animales , Actividades Humanas , Humanos , Modelos Teóricos , Densidad de Población , Estados Unidos
18.
Oecologia ; 168(3): 719-26, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21947451

RESUMEN

Model averaging is gaining popularity among ecologists for making inference and predictions. Methods for combining models include Bayesian model averaging (BMA) and Akaike's Information Criterion (AIC) model averaging. BMA can be implemented with different prior model weights, including the Kullback-Leibler prior associated with AIC model averaging, but it is unclear how the prior model weight affects model results in a predictive context. Here, we implemented BMA using the Bayesian Information Criterion (BIC) approximation to Bayes factors for building predictive models of bird abundance and occurrence in the Chihuahuan Desert of New Mexico. We examined how model predictive ability differed across four prior model weights, and how averaged coefficient estimates, standard errors and coefficients' posterior probabilities varied for 16 bird species. We also compared the predictive ability of BMA models to a best single-model approach. Overall, Occam's prior of parsimony provided the best predictive models. In general, the Kullback-Leibler prior, however, favored complex models of lower predictive ability. BMA performed better than a best single-model approach independently of the prior model weight for 6 out of 16 species. For 6 other species, the choice of the prior model weight affected whether BMA was better than the best single-model approach. Our results demonstrate that parsimonious priors may be favorable over priors that favor complexity for making predictions. The approach we present has direct applications in ecology for better predicting patterns of species' abundance and occurrence.


Asunto(s)
Aves/fisiología , Modelos Biológicos , Animales , Teorema de Bayes , New Mexico , Densidad de Población , Dinámica Poblacional
19.
Sci Rep ; 10(1): 836, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964926

RESUMEN

Identifying the factors that determine habitat suitability and hence patterns of wildlife abundances over broad spatial scales is important for conservation. Ecosystem productivity is a key aspect of habitat suitability, especially for large mammals. Our goals were to a) explain patterns of moose (Alces alces) abundance across Russia based on remotely sensed measures of vegetation productivity using Dynamic Habitat Indices (DHIs), and b) examine if patterns of moose abundance and productivity differed before and after the collapse of the Soviet Union. We evaluated the utility of the DHIs using multiple regression models predicting moose abundance by administrative regions. Univariate models of the individual DHIs had lower predictive power than all three combined. The three DHIs together with environmental variables, explained 79% of variation in moose abundance. Interestingly, the predictive power of the models was highest for the 1980s, and decreased for the two subsequent decades. We speculate that the lower predictive power of our environmental variables in the later decades may be due to increasing human influence on moose densities. Overall, we were able to explain patterns in moose abundance in Russia well, which can inform wildlife managers on the long-term patterns of habitat use of the species.


Asunto(s)
Ciervos , Ecosistema , Densidad de Población , Animales , Federación de Rusia , Factores de Tiempo
20.
Ecol Appl ; 18(8): 1956-66, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19263890

RESUMEN

Many wild species are affected by human activities occurring at broad spatial scales. For instance, in South America, habitat loss threatens Greater Rhea (Rhea americana) populations, making it important to model and map their habitat to better target conservation efforts. Spatially explicit habitat modeling is a powerful approach to understand and predict species occurrence and abundance. One problem with this approach is that commonly used land cover classifications do not capture the variability within a given land cover class that might constitute important habitat attribute information. Texture measures derived from remote sensing images quantify the variability in habitat features among and within habitat types; hence they are potentially a powerful tool to assess species-habitat relationships. Our goal was to explore the utility of texture measures for habitat modeling and to develop a habitat suitability map for Greater Rheas at the home range level in grasslands of Argentina. Greater Rhea group size obtained from aerial surveys was regressed against distance to roads, houses, and water, and land cover class abundance (dicotyledons, crops, grassland, forest, and bare soil), normalized difference vegetation index (NDVI), and selected first- and second-order texture measures derived from Landsat Thematic Mapper (TM) imagery. Among univariate models, Rhea group size was most strongly positively correlated with texture variables derived from near infrared reflectance measurement (TM band 4). The best multiple regression models explained 78% of the variability in Greater Rhea group size. Our results suggest that texture variables captured habitat heterogeneity that the conventional land cover classification did not detect. We used Greater Rhea group size as an indicator of habitat suitability; we categorized model output into different habitat quality classes. Only 16% of the study area represented high-quality habitat for Greater Rheas (group size > or =15). Our results stress the potential of image texture to capture within-habitat variability in habitat assessments, and the necessity to preserve the remaining natural habitat for Greater Rheas.


Asunto(s)
Ambiente , Modelos Biológicos , Reiformes/fisiología , Comunicaciones por Satélite , Animales , Argentina , Conservación de los Recursos Naturales , Geografía , Procesamiento de Imagen Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA