Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 71(7): 1771-1775, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34748076

RESUMEN

Here, we report a novel experimental setup to perform adoptive transfer of gene-edited B cells using humanized immune system mice by infusing autologous HIS mouse-derived human B cells "educated" in a murine context and thus rendered tolerant to the host. The present approach presents two advantages over the conventional humanized PBMC mouse models: (i) it circumvents the risk of xenogeneic graft-versus-host reaction and (ii) it mimics more closely human immune responses, thus favoring clinical translation. We show that the frequencies and numbers of transduced B cells in recipient's spleens one week post-transfer are within the range of the size of the pre-immune B cell population specific for a given protein antigen in the mouse. They are also compatible with the B cell numbers required to elicit a sizeable immune response upon immunization. Altogether, our findings pave the way for future studies aiming at assessing therapeutic interventions involving B cell reprogramming for instance by an antibody transgene in a "humanized" hematopoietic setting.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucocitos Mononucleares , Traslado Adoptivo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones SCID
2.
Biochimie ; 203: 106-117, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35041857

RESUMEN

The specific activities of gastric and pancreatic lipases were measured using triacylglycerols (TAG) from rapeseed oil, purified 1,3-sn-DAG and 1,2(2,3)-sn-DAG produced from this oil, as well as a rapeseed oil enriched with 40% w/w DAG (DAGOIL). Gastric lipase was more active on 1,3-sn-DAG than on 1,2(2,3)-sn-DAG and TAG, whereas pancreatic lipase displayed a reverse selectivity with a higher activity on TAG than on DAG taken as initial substrates. However, in both cases, the highest activities were displayed on DAGOIL. These findings show that DAG mixed with TAG, such as in the course of digestion, is a better substrate for lipases than TAG. The same rapeseed oil acylglycerols were used to investigate intestinal fat absorption in rats with mesenteric lymph duct cannulation. The levels of TAG synthesized in the intestine and total fatty acid concentration in lymph were not different when the rats were fed identical amounts of rapeseed oil TAG, 1,2(2,3)-sn-DAG, 1,3-sn-DAG or DAGOIL. Since the lipolysis of 1,3-sn-DAG by digestive lipases leads to glycerol and not 2-sn-monoacylglycerol (2-sn-MAG) like TAG lipolysis, these results suggest that the re-synthesis of TAG in the enterocytes can entirely occur through the "glycerol-3-phosphate (G3P)" pathway, with the same efficiency as the 2-sn-MAG pathway predominantly involved in the intestinal fat absorption. These findings shed new light on the role played by DAG as intermediate lipolysis products. Depending on their structure, 1,2(2,3)-sn-DAG versus 1,3-sn-DAG, DAG may control the pathway (2-sn-MAG or G3P) by which TAG are re-synthesized in the enterocytes.


Asunto(s)
Diglicéridos , Enterocitos , Ratas , Animales , Diglicéridos/metabolismo , Enterocitos/metabolismo , Lipasa/metabolismo , Aceite de Brassica napus/metabolismo , Glicerol/metabolismo , Triglicéridos/metabolismo , Digestión , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA