Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Methods ; 20(2): 259-267, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36765136

RESUMEN

Single-molecule localization microscopy (SMLM) generates data in the form of coordinates of localized fluorophores. Cluster analysis is an attractive route for extracting biologically meaningful information from such data and has been widely applied. Despite a range of cluster analysis algorithms, there exists no consensus framework for the evaluation of their performance. Here, we use a systematic approach based on two metrics to score the success of clustering algorithms in simulated conditions mimicking experimental data. We demonstrate the framework using seven diverse analysis algorithms: DBSCAN, ToMATo, KDE, FOCAL, CAML, ClusterViSu and SR-Tesseler. Given that the best performer depended on the underlying distribution of localizations, we demonstrate an analysis pipeline based on statistical similarity measures that enables the selection of the most appropriate algorithm, and the optimized analysis parameters for real SMLM data. We propose that these standard simulated conditions, metrics and analysis pipeline become the basis for future analysis algorithm development and evaluation.


Asunto(s)
Algoritmos , Imagen Individual de Molécula , Análisis por Conglomerados , Benchmarking
2.
J Cell Sci ; 135(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35748225

RESUMEN

Commonly applied super-resolution light microscopies have provided insight into subcellular processes at the nanoscale. However, imaging depth, speed, throughput and cost remain significant challenges, limiting the numbers of three-dimensional (3D) nanoscale processes that can be investigated and the number of laboratories able to undertake such analysis. Expansion microscopy (ExM) solves many of these limitations, but its application to imaging nuclear processes has been constrained by concerns of unequal nuclear expansion. Here, we demonstrate the conditions for isotropic expansion of the nucleus at a resolution equal to or better than 120-130 nm (pre-expansion). Using the DNA damage response proteins BRCA1, 53BP1 (also known as TP53BP1) and RAD51 as exemplars, we quantitatively describe the 3D nanoscale organisation of over 50,000 DNA damage response structures. We demonstrate the ability to assess chromatin-regulated events and show the simultaneous assessment of four elements. This study thus demonstrates how ExM can contribute to the investigation of nanoscale nuclear processes.


Asunto(s)
Cromatina , Microscopía , Núcleo Celular , Microscopía/métodos
3.
PLoS Comput Biol ; 18(11): e1010708, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36441766

RESUMEN

The clustering of platelet glycoprotein receptors with cytosolic YxxL and YxxM motifs, including GPVI, CLEC-2 and PEAR1, triggers activation via phosphorylation of the conserved tyrosine residues and recruitment of the tandem SH2 (Src homology 2) domain effector proteins, Syk and PI 3-kinase. We have modelled the clustering of these receptors with monovalent, divalent and tetravalent soluble ligands and with transmembrane ligands based on the law of mass action using ordinary differential equations and agent-based modelling. The models were experimentally evaluated in platelets and transfected cell lines using monovalent and multivalent ligands, including novel nanobody-based divalent and tetravalent ligands, by fluorescence correlation spectroscopy. Ligand valency, receptor number, receptor dimerisation, receptor phosphorylation and a cytosolic tandem SH2 domain protein act in synergy to drive receptor clustering. Threshold concentrations of a CLEC-2-blocking antibody and Syk inhibitor act in synergy to block platelet aggregation. This offers a strategy for countering the effect of avidity of multivalent ligands and in limiting off-target effects.


Asunto(s)
Glicoproteínas de Membrana Plaquetaria , Dominios Homologos src , Simulación por Computador
4.
Haematologica ; 107(1): 243-259, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33327716

RESUMEN

In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviours. The mechanisms by which ß1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell (iPSC) derived MKs, and healthy human donor platelets. We find distinct patterns of polymodification in MKs and platelets, mediated by the antagonistic activities of the cell specific expression of Tubulin Tyrosine Ligase Like (TTLLs) and Cytosolic Carboxypeptidase (CCP) enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganisation required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.


Asunto(s)
Células Madre Pluripotentes Inducidas , Tubulina (Proteína) , Plaquetas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/metabolismo , Procesamiento Proteico-Postraduccional , Trombopoyesis , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
5.
Bioinformatics ; 36(5): 1614-1621, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31626286

RESUMEN

MOTIVATION: Localization microscopy data is represented by a set of spatial coordinates, each corresponding to a single detection, that form a point cloud. This can be analyzed either by rendering an image from these coordinates, or by analyzing the point cloud directly. Analysis of this type has focused on clustering detections into distinct groups which produces measurements such as cluster area, but has limited capacity to quantify complex molecular organization and nano-structure. RESULTS: We present a segmentation protocol which, through the application of persistence-based clustering, is capable of probing densely packed structures which vary in scale. An increase in segmentation performance over state-of-the-art methods is demonstrated. Moreover we employ persistent homology to move beyond clustering, and quantify the topological structure within data. This provides new information about the preserved shapes formed by molecular architecture. Our methods are flexible and we demonstrate this by applying them to receptor clustering in platelets, nuclear pore components, endocytic proteins and microtubule networks. Both 2D and 3D implementations are provided within RSMLM, an R package for pointillist-based analysis and batch processing of localization microscopy data. AVAILABILITY AND IMPLEMENTATION: RSMLM has been released under the GNU General Public License v3.0 and is available at https://github.com/JeremyPike/RSMLM. Tutorials for this library implemented as Binder ready Jupyter notebooks are available at https://github.com/JeremyPike/RSMLM-tutorials. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Análisis de Datos , Programas Informáticos , Análisis por Conglomerados , Microscopía , Imagen Individual de Molécula
6.
Haematologica ; 106(1): 208-219, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31949019

RESUMEN

Inhibitors of the tyrosine kinase Btk have been proposed as novel antiplatelet agents. In this study we show that low concentrations of the Btk inhibitor ibrutinib block CLEC-2-mediated activation and tyrosine phosphorylation including Syk and PLCγ2 in human platelets. Activation is also blocked in patients with X-linked agammaglobulinemia (XLA) caused by a deficiency or absence of Btk. In contrast, the response to GPVI is delayed in the presence of low concentrations of ibrutinib or in patients with XLA, and tyrosine phosphorylation of Syk is preserved. A similar set of results is seen with the second-generation inhibitor, acalabrutinib. The differential effect of Btk inhibition in CLEC-2 relative to GPVI signalling is explained by the positive feedback role involving Btk itself, as well as ADP and thromboxane A2 mediated activation of P2Y12 and TP receptors, respectively. This feedback role is not seen in mouse platelets and, consistent with this, CLEC-2-mediated activation is blocked by high but not by low concentrations of ibrutinib. Nevertheless, thrombosis was absent in 8 out of 13 mice treated with ibrutinib. These results show that Btk inhibitors selectively block activation of human platelets by CLEC-2 relative to GPVI suggesting that they can be used at 'low dose' in patients to target CLEC-2 in thrombo-inflammatory disease.


Asunto(s)
Activación Plaquetaria , Glicoproteínas de Membrana Plaquetaria , Animales , Plaquetas , Humanos , Lectinas Tipo C , Ratones , Inhibidores de Proteínas Quinasas/farmacología
7.
Platelets ; 32(1): 59-73, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33455536

RESUMEN

Collagen, the most thrombogenic constituent of blood vessel walls, activates platelets through glycoprotein VI (GPVI). In suspension, following platelet activation by collagen, GPVI is cleaved by A Disintegrin And Metalloproteinase (ADAM)10 and ADAM17. In this study, we use single-molecule localization microscopy and a 2-level DBSCAN-based clustering tool to show that GPVI remains clustered along immobilized collagen fibers for at least 3 hours in the absence of significant shedding. Tyrosine phosphorylation of spleen tyrosine kinase (Syk) and Linker of Activated T cells (LAT), and elevation of intracellular Ca2+, are sustained over this period. Syk, but not Src kinase-dependent signaling is required to maintain clustering of the collagen integrin α2ß1, whilst neither is required for GPVI. We propose that clustering of GPVI on immobilized collagen protects GPVI from shedding in order to maintain sustained Src and Syk-kinases dependent signaling, activation of integrin α2ß1, and continued adhesion.


Asunto(s)
Plaquetas/metabolismo , Colágeno/uso terapéutico , Glicoproteínas de Membrana Plaquetaria/metabolismo , Colágeno/farmacología , Humanos , Transducción de Señal
8.
Platelets ; 32(1): 54-58, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-32321340

RESUMEN

The assessment of platelet spreading through light microscopy, and the subsequent quantification of parameters such as surface area and circularity, is a key assay for many platelet biologists. Here we present an analysis workflow which robustly segments individual platelets to facilitate the analysis of large numbers of cells while minimizing user bias. Image segmentation is performed by interactive learning and touching platelets are separated with an efficient semi-automated protocol. We also use machine learning methods to robustly automate the classification of platelets into different subtypes. These adaptable and reproducible workflows are made freely available and are implemented using the open-source software KNIME and ilastik.


Asunto(s)
Plaquetas/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Flujo de Trabajo
9.
Platelets ; 31(5): 559-569, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32079444

RESUMEN

Recent advances in super-resolution (sub-diffraction limited) microscopy have yielded remarkable insights into the nanoscale architecture and behavior of cells. In addition to the capacity to provide sub 100 nm resolution, these technologies offer unique quantitative opportunities with particular relevance to platelet and megakaryocyte biology. In this review, we provide a short introduction to modern super-resolution microscopy, its applications in the field of platelet and megakaryocyte biology, and emerging quantitative approaches which will allow for unprecedented insights into the biology of these unique cell types.


Asunto(s)
Plaquetas/metabolismo , Diagnóstico por Imagen/métodos , Megacariocitos/metabolismo , Plaquetas/citología , Humanos , Megacariocitos/citología
10.
Platelets ; 31(2): 187-197, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30849265

RESUMEN

Losartan and honokiol are small molecules which have been described to inhibit aggregation of platelets by collagen. Losartan has been proposed to block clustering of GPVI but not to affect binding of collagen. Honokiol has been reported to bind directly to GPVI but only at a concentration that is three orders of magnitude higher than that needed for inhibition of aggregation. The mechanism of action of both inhibitors is so far unclear. In the present study, we confirm the inhibitory effects of both agents on platelet aggregation by collagen and show that both also block the aggregation induced by the activation of CLEC-2 or the low affinity immune receptor FcγRIIa at similar concentrations. For GPVI and CLEC-2, this inhibition is associated with a reduction in protein tyrosine phosphorylation of multiple proteins including Syk. In contrast, on a collagen surface, spreading of platelets and clustering of GPVI (measured by single molecule localisation microscopy) was not altered by losartan or honokiol. Furthermore, in flow whole-blood, both inhibitors suppressed the formation of multi-layered platelet thrombi at arteriolar shear rates at concentrations that hardly affect collagen-induced platelet aggregation in platelet rich plasma. Together, these results demonstrate that losartan and honokiol have multiple effects on platelets which should be considered in the use of these compounds as anti-platelet agents.


Asunto(s)
Compuestos de Bifenilo/farmacología , Lignanos/farmacología , Losartán/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Plaquetas/metabolismo , Colágeno/farmacología , Humanos , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Fosforilación , Glicoproteínas de Membrana Plaquetaria/metabolismo , Plasma Rico en Plaquetas/efectos de los fármacos , Plasma Rico en Plaquetas/enzimología , Plasma Rico en Plaquetas/metabolismo , Receptores de IgG/metabolismo , Quinasa Syk/metabolismo , Trombosis
11.
Haematologica ; 104(8): 1648-1660, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30733265

RESUMEN

Platelets promote wound healing by forming a vascular plug and by secreting growth factors and cytokines. Glycoprotein (GP)VI and C-type lectin-like receptor (CLEC)-2 signal through a (hem)-immunoreceptor tyrosine-based activation motif, which induces platelet activation. GPVI and CLEC-2 support vascular integrity during inflammation in the skin through regulation of leukocyte migration and function, and by sealing sites of vascular damage. In this study, we investigated the role of impaired vascular integrity due to GPVI and/or CLEC-2 deficiency in wound repair using a full-thickness excisional skin wound model in mice. Transgenic mice deficient in both GPVI and CLEC-2 exhibited accelerated skin wound healing, despite a marked impairment in vascular integrity. The local and temporal bleeding in the skin led to greater plasma protein entry, including fibrinogen and clotting factors, was associated with increased fibrin generation, reduction in wound neutrophils and M1 macrophages, decreased level of tumor necrosis factor (TNF)-α, and enhanced angiogenesis at day 3 after injury. Accelerated wound healing was not due to developmental defects in CLEC-2 and GPVI double-deficient mice as similar results were observed in GPVI-deficient mice treated with a podoplanin-blocking antibody. The rate of wound healing was not altered in mice deficient in either GPVI or CLEC-2. Our results show that, contrary to defects in coagulation, bleeding following a loss of vascular integrity caused by platelet CLEC-2 and GPVI deficiency facilitates wound repair by increasing fibrin(ogen) deposition, reducing inflammation, and promoting angiogenesis.


Asunto(s)
Lectinas Tipo C/deficiencia , Glicoproteínas de Membrana/deficiencia , Neovascularización Fisiológica/genética , Glicoproteínas de Membrana Plaquetaria/deficiencia , Cicatrización de Heridas/genética , Animales , Biomarcadores , Femenino , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Piel/metabolismo , Piel/patología
12.
Methods ; 115: 42-54, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28131869

RESUMEN

Confocal microscopy is a powerful tool for the study of cellular receptor trafficking and endocytosis. Unbiased and robust image analysis workflows are required for the identification, and study, of aberrant trafficking. After a brief review of related strategies, identifying both good and bad practice, custom workflows for the analysis of live cell 3D time-lapse data are presented. Strategies for data pre-processing, including denoising and background subtraction are considered. We use a 3D level set protocol to accurately segment cells using only the signal from fluorescently labelled receptor. A protocol for the quantification of changes to subcellular receptor distribution over time is then presented. As an example, ligand stimulated trafficking of epidermal growth factor receptor (EGFR) is shown to be significantly reduced in both AG1478 and Dynasore treated cells. Protocols for the quantitative analysis of colocalization between receptor and endosomes are also introduced, including strategies for signal isolation and statistical testing. By calculating the Manders and Pearson coefficients, both co-occurrence and correlation can be assessed. A statistically significant decrease in the level of ligand induced co-occurrence between EGFR and rab5 positive endosomes is demonstrated for both the AG1478 and Dynasore treated cells relative to a control. Finally, a strategy for the visualisation of co-occurrence is presented, which provides an unbiased alternative to colour overlays.


Asunto(s)
Receptores ErbB/metabolismo , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/genética , Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Hidrazonas/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Transporte de Proteínas/efectos de los fármacos , Quinazolinas/farmacología , Proteínas Recombinantes de Fusión/genética , Transformación Genética , Tirfostinos/farmacología , Proteínas de Unión al GTP rab5/genética , Proteína Fluorescente Roja
14.
J Thromb Haemost ; 22(8): 2281-2293, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38492852

RESUMEN

BACKGROUND: Scott syndrome is a mild platelet-type bleeding disorder, first described in 1979, with only 3 unrelated families identified through defective phosphatidylserine (PS) exposure and confirmed by sequencing. The syndrome is distinguished by impaired surface exposure of procoagulant PS on platelets after stimulation. To date, platelet function and thrombin generation in this condition have not been extensively characterized. OBJECTIVES: Genetic and functional studies were undertaken in a consanguineous family with a history of excessive bleeding of unknown cause. METHODS: A targeted gene panel of known bleeding and platelet genes was used to identify possible genetic variants. Platelet phenotyping, flow adhesion, flow cytometry, whole blood and platelet-rich plasma thrombin generation, and specialized extracellular vesicle measurements were performed. RESULTS: We detected a novel homozygous frameshift variant, c.1943del (p.Arg648Hisfs∗23), in ANO6 encoding Anoctamin 6, in a patient with a bleeding history but interestingly with normal ANO6 expression. Phenotyping of the patient's platelets confirmed the absence of PS expression and procoagulant activity but also revealed other defects including reduced platelet δ granules, reduced ristocetin-mediated aggregation and secretion, and reduced P-selectin expression after stimulation. PS was absent on spread platelets, and thrombi formed over collagen at 1500/s. Reduced thrombin generation was observed in platelet-rich plasma and confirmed in whole blood using a new thrombin generation assay. CONCLUSION: We present a comprehensive report of a patient with Scott syndrome with a novel frameshift variant in AN06, which is associated with no platelet PS exposure and markedly reduced thrombin generation in whole blood, explaining the significant bleeding phenotype observed.


Asunto(s)
Anoctaminas , Trastornos de la Coagulación Sanguínea , Mutación del Sistema de Lectura , Hemorragia , Trombina , Adulto , Femenino , Humanos , Masculino , Anoctaminas/genética , Coagulación Sanguínea/genética , Trastornos de la Coagulación Sanguínea/genética , Plaquetas/metabolismo , Consanguinidad , Predisposición Genética a la Enfermedad , Hemorragia/genética , Hemorragia/sangre , Homocigoto , Linaje , Fenotipo , Fosfatidilserinas , Proteínas de Transferencia de Fosfolípidos , Agregación Plaquetaria , Pruebas de Función Plaquetaria , Trombina/metabolismo
15.
J Thromb Haemost ; 21(8): 2260-2267, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37150294

RESUMEN

BACKGROUND: Collagen-induced platelet activation is predominantly mediated by glycoprotein (GP) VI through formation of receptor clusters that coincide with the accumulation of signaling molecules and are hypothesized to drive strong and sustained platelet activation. OBJECTIVES: To determine the importance of GPVI clusters for thrombus formation in whole blood under shear. METHODS: We utilized whole blood microfluidics and an anti-GPVI nanobody (Nb), Nb28, labeled with AlexaFluor 488, to assess the distribution of GPVI on the surface of platelets adhering to a range of collagen-like substrates with different platelet activation potentials. RESULTS: Automated analysis of GPVI surface distribution on platelets supported the hypothesis that there is a relationship between GPVI cluster formation, thrombus size, and phosphatidylserine (PS) exposure. Substrates that supported the formation of macroclusters also induced significantly bigger aggregates, with increased amounts of PS-exposing platelets in comparison to substrates where no GPVI clusters were detected. Furthermore, we demonstrate that only direct inhibition of GPVI binding, but not of downstream signaling, is able to disrupt cluster formation. CONCLUSION: Labeled anti-GPVI Nb28 permits visualization of GPVI clustering under flow conditions. Furthermore, whilst inhibition of downstream signaling does not affect clustering, it does prevent thrombus formation. Therefore, GPVI macroclustering is a prerequisite for thrombus formation and platelet activation, namely, PS exposure, on highly GPVI-dependent collagen surfaces.


Asunto(s)
Plaquetas , Trombosis , Humanos , Plaquetas/metabolismo , Fosfatidilserinas/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Activación Plaquetaria , Colágeno/metabolismo , Agregación Plaquetaria
16.
Nat Commun ; 13(1): 2460, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513371

RESUMEN

Infection or vaccination leads to the development of germinal centers (GC) where B cells evolve high affinity antigen receptors, eventually producing antibody-forming plasma cells or memory B cells. Here we follow the migratory pathways of B cells emerging from germinal centers (BEM) and find that many BEM cells migrate into the lymph node subcapsular sinus (SCS) guided by sphingosine-1-phosphate (S1P). From the SCS, BEM cells may exit the lymph node to enter distant tissues, while some BEM cells interact with and take up antigen from SCS macrophages, followed by CCL21-guided return towards the GC. Disruption of local CCL21 gradients inhibits the recycling of BEM cells and results in less efficient adaption to antigenic variation. Our findings thus suggest that the recycling of antigen variant-specific BEM cells and transport of antigen back to GC may support affinity maturation to antigenic drift.


Asunto(s)
Deriva y Cambio Antigénico , Células B de Memoria , Linfocitos B , Centro Germinal , Ganglios Linfáticos
17.
J Thromb Haemost ; 19(1): 262-268, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021027

RESUMEN

Essentials Identifying genetic variants in platelet disorders is challenging due to its heterogenous nature. We combine WES, RNAseq, and python-based bioinformatics to identify novel gene variants. We find novel candidates in patient data by cross-referencing against a murine RNAseq model of thrombopoiesis. This innovative combined bioinformatic approach provides novel data for future research in the field. ABSTRACT: Background The UK Genotyping and Phenotyping of Platelets study has recruited and analyzed 129 patients with suspected heritable bleeding. Previously, 55 individuals had a definitive genetic diagnosis based on whole exome sequencing (WES) and platelet morphological and functional testing. A significant challenge in this field is defining filtering criteria to identify the most likely candidate mutations for diagnosis and further study. Objective Identify candidate gene mutations for the remaining 74 patients with platelet-based bleeding with unknown genetic cause, forming the basis of future re-recruitment and further functional testing and assessment. Methods Using python-based data frame indexing, we first identify and filter all novel and rare variants using a panel of 116 genes known to cause bleeding across the full cohort of WES data. This identified new variants not previously reported in this cohort. We then index the remaining patients, with rare or novel variants in known bleeding genes against a murine RNA sequencing dataset that models proplatelet-forming megakaryocytes. Results Filtering against known genes identified candidate variants in 59 individuals, including novel variants in several known genes. In the remaining cohort of "unknown" patients, indexing against differentially expressed genes revealed candidate gene variants in several novel unreported genes, focusing on 14 patients with a severe clinical presentation. Conclusions We identified candidate mutations in a cohort of patients with no previous genetic diagnosis. This work involves innovative coupling of RNA sequencing and WES to identify candidate variants forming the basis of future study in a significant number of undiagnosed patients.


Asunto(s)
Plaquetas , Exoma , Animales , Hemorragia/genética , Humanos , Ratones , Mutación , Secuenciación del Exoma
18.
JCO Clin Cancer Inform ; 5: 176-186, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33570999

RESUMEN

PURPOSE: Chromosomal aberration and DNA copy number change are robust hallmarks of cancer. The gold standard for detecting copy number changes in tumor cells is fluorescence in situ hybridization (FISH) using locus-specific probes that are imaged as fluorescent spots. However, spot counting often does not perform well on solid tumor tissue sections due to partially represented or overlapping nuclei. MATERIALS AND METHODS: To overcome these challenges, we have developed a computational approach called FrenchFISH, which comprises a nuclear volume correction method coupled with two types of Poisson models: either a Poisson model for improved manual spot counting without the need for control probes or a homogeneous Poisson point process model for automated spot counting. RESULTS: We benchmarked the performance of FrenchFISH against previous approaches using a controlled simulation scenario and tested it experimentally in 12 ovarian carcinoma FFPE-tissue sections for copy number alterations at three loci (c-Myc, hTERC, and SE7). FrenchFISH outperformed standard spot counting with 74% of the automated counts having < 1 copy number difference from the manual counts and 17% having < 2 copy number differences, while taking less than one third of the time of manual counting. CONCLUSION: FrenchFISH is a general approach that can be used to enhance clinical diagnosis on sections of any tissue by both speeding up and improving the accuracy of spot count estimates.


Asunto(s)
Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Simulación por Computador , ADN , Variaciones en el Número de Copia de ADN/genética , Humanos , Hibridación Fluorescente in Situ
19.
J Thromb Haemost ; 18(2): 485-496, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31680418

RESUMEN

BACKGROUND: Accurate protein quantification is a vital prerequisite for generating meaningful predictions when using systems biology approaches, a method that is increasingly being used to unravel the complexities of subcellular interactions and as part of the drug discovery process. Quantitative proteomics, flow cytometry, and western blotting have been extensively used to define human platelet protein copy numbers, yet for mouse platelets, a model widely used for platelet research, evidence is largely limited to a single proteomic dataset in which the total amount of proteins was generally comparatively higher than those found in human platelets. OBJECTIVES: To investigate the functional implications of discrepancies between levels of mouse and human proteins in the glycoprotein VI (GPVI) signalling pathway using a systems pharmacology model of GPVI. METHODS: The protein copy number of mouse platelet receptors was determined using flow cytometry. The Virtual Platelet, a mathematical model of GPVI signalling, was used to determine the consequences of protein copy number differences observed between human and mouse platelets. RESULTS AND CONCLUSION: Despite the small size of mouse platelets compared to human platelets they possessed a greater density of surface receptors alongside a higher concentration of intracellular signalling proteins. Surprisingly the predicted temporal profile of Syk activity was similar in both species with predictions supported experimentally. Super resolution microscopy demonstrates that the spatial distribution of Syk is similar between species, suggesting that the spatial distribution of receptors and signalling molecules in activated platelets, rather than their copy number, is important for signalling pathway regulation.


Asunto(s)
Glicoproteínas de Membrana Plaquetaria , Proteómica , Animales , Plaquetas , Péptidos y Proteínas de Señalización Intracelular , Ratones , Activación Plaquetaria , Transducción de Señal
20.
Blood Adv ; 4(13): 2953-2961, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32603422

RESUMEN

The role of glycoprotein VI (GPVI) in platelets was investigated in 3 families bearing an insertion within the GP6 gene that introduces a premature stop codon prior to the transmembrane domain, leading to expression of a truncated protein in the cytoplasm devoid of the transmembrane region. Western blotting and flow cytometry of GP6hom (homozygous) platelets confirmed loss of the full protein. The level of the Fc receptor γ-chain, which associates with GPVI in the membrane, was partially reduced, but expression of other receptors and signaling proteins was not altered. Spreading of platelets on collagen and von Willebrand factor (which supports partial spreading) was abolished in GP6hom platelets, and spreading on uncoated glass was reduced. Anticoagulated whole blood flowed over immobilized collagen or a mixture of von Willebrand factor, laminin, and rhodocytin (noncollagen surface) generated stable platelet aggregates that express phosphatidylserine (PS). Both responses were blocked on the 2 surfaces in GP6hom individuals, but adhesion was not altered. Thrombin generation was partially reduced in GP6hom blood. The frequency of the GP6het (heterozygous) variant in a representative sample of the Chilean population (1212 donors) is 2.9%, indicating that there are ∼4000 GP6hom individuals in Chile. These results demonstrate that GPVI supports aggregation and PS exposure under flow on collagen and noncollagen surfaces, but not adhesion. The retention of adhesion may contribute to the mild bleeding diathesis of GP6hom patients and account for why so few of the estimated 4000 GP6hom individuals in Chile have been identified.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Glicoproteínas de Membrana Plaquetaria , Plaquetas , Colágeno , Humanos , Glicoproteínas de Membrana Plaquetaria/genética , Factor de von Willebrand
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA