RESUMEN
Apolipoprotein B (APOB) is a constituent of unique lipoprotein particles (LPPs) produced in the retinal pigment epithelium (RPE), which separates the neural retina from Bruch's membrane (BrM) and choroidal circulation. These LPPs accumulate with age in BrM and contribute to the development of age-related macular degeneration, a major blinding disease. The APOB100 transgenic expression in mice, which unlike humans lack the full-length APOB100, leads to lipid deposits in BrM. Herein, we further characterized APOB100 transgenic mice. We imaged mouse retina in vivo and assessed chorioretinal lipid distribution, retinal sterol levels, retinal cholesterol input, and serum content as well as tracked indocyanine green-bound LPPs in mouse plasma and retina after an intraperitoneal injection. Retinal function and differentially expressed proteins were also investigated. APOB100 transgenic mice had increased serum LDL content and an additional higher density HDL subpopulation; their retinal cholesterol levels (initially decreased) became normal with age. The LPP cycling between the RPE and choroidal circulation was increased. Yet, LPP trafficking from the RPE to the neural retina was limited, and total retinal cholesterol input did not change. There were lipid deposits in the RPE and BrM, and retinal function was impaired. Retinal proteomics provided mechanistic insights. Collectively, our data suggested that the serum LDL/HDL ratio may not affect retinal pathways of cholesterol input as serum LPP load is mainly handled by the RPE, which offloads LPP excess to the choroidal circulation rather than neural retina. Different HDL subpopulations should be considered in studies linking serum LPPs and age-related macular degeneration.
Asunto(s)
Degeneración Macular , Retina , Humanos , Ratones , Animales , Ratones Transgénicos , Epitelio Pigmentado de la Retina , Colesterol , Degeneración Macular/genéticaRESUMEN
Cytochrome P450 46A1 (CYP46A1) is the CNS-specific cholesterol 24-hydroxylase that controls cholesterol elimination and turnover in the brain. In mouse models, pharmacologic CYP46A1 activation with low-dose efavirenz or by gene therapy mitigates the manifestations of various brain disorders, neurologic, and nonneurologic, by affecting numerous, apparently unlinked biological processes. Accordingly, CYP46A1 is emerging as a promising therapeutic target; however, the mechanisms underlying the multiplicity of the brain CYP46A1 activity effects are currently not understood. We proposed the chain reaction hypothesis, according to which CYP46A1 is important for the three primary (unifying) processes in the brain (sterol flux through the plasma membranes, acetyl-CoA, and isoprenoid production), which in turn affect a variety of secondary processes. We already identified several processes secondary to changes in sterol flux and herein undertook a multiomics approach to compare the brain proteome, acetylproteome, and metabolome of 5XFAD mice (an Alzheimer's disease model), control and treated with low-dose efavirenz. We found that the latter had increased production of phospholipids from the corresponding lysophospholipids and a globally increased protein acetylation (including histone acetylation). Apparently, these effects were secondary to increased acetyl-CoA production. Signaling of small GTPases due to their altered abundance or abundance of their regulators could be affected as well, potentially via isoprenoid biosynthesis. In addition, the omics data related differentially abundant molecules to other biological processes either reported previously or new. Thus, we obtained unbiased mechanistic insights and identified potential players mediating the multiplicity of the CYP46A1 brain effects and further detailed our chain reaction hypothesis.
Asunto(s)
Alquinos , Benzoxazinas , Encéfalo , Colesterol 24-Hidroxilasa , Ciclopropanos , Animales , Colesterol 24-Hidroxilasa/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Ratones , Benzoxazinas/farmacología , Benzoxazinas/administración & dosificación , Ciclopropanos/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones Transgénicos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a DrogaRESUMEN
Apolipoprotein J (APOJ) is a multifunctional protein with genetic evidence suggesting an association between APOJ polymorphisms and Alzheimer's disease as well as exfoliation glaucoma. Herein we conducted ocular characterizations of Apoj-/- mice and found that their retinal cholesterol levels were decreased and that this genotype had several risk factors for glaucoma: increased intraocular pressure and cup-to-disk ratio and impaired retinal ganglion cell (RGC) function. The latter was not due to RGC degeneration or activation of retinal Muller cells and microglia/macrophages. There was also a decrease in retinal levels of 24-hydroxycholesterol, a suggested neuroprotectant under glaucomatous conditions and a positive allosteric modulator of N-methyl-D-aspartate receptors mediating the light-evoked response of the RGC. Therefore, Apoj-/- mice were treated with low-dose efavirenz, an allosteric activator of CYP46A1 which converts cholesterol into 24-hydroxycholesterol. Efavirenz treatment increased retinal cholesterol and 24-hydroxycholesterol levels, normalized intraocular pressure and cup-to-disk ratio, and rescued in part RGC function. Retinal expression of Abcg1 (a cholesterol efflux transporter), Apoa1 (a constituent of lipoprotein particles), and Scarb1 (a lipoprotein particle receptor) was increased in EVF-treated Apoj-/- mice, indicating increased retinal cholesterol transport on lipoprotein particles. Ocular characterizations of Cyp46a1-/- mice supported the beneficial efavirenz treatment effects via CYP46A1 activation. The data obtained demonstrate an important APOJ role in retinal cholesterol homeostasis and link this apolipoprotein to the glaucoma risk factors and retinal 24-hydroxycholesterol production by CYP46A1. As the CYP46A1 activator efavirenz is an FDA-approved anti-HIV drug, our studies suggest a new therapeutic approach for treatment of glaucomatous conditions.
Asunto(s)
Glaucoma , Esteroles , Animales , Ratones , Clusterina , Colesterol 24-Hidroxilasa , Glaucoma/tratamiento farmacológico , Glaucoma/genéticaRESUMEN
High dose (S)-efavirenz (EFV) inhibits the HIV reverse transcriptase enzyme and is used to lower HIV load. Low-dose EFV allosterically activates CYP46A1, the key enzyme for cholesterol elimination from the brain, and is investigated as a potential treatment for Alzheimer's disease. Simultaneously, we evaluate EFV dihydroxymetabolites for in vivo brain effects to compare with those of (S)-EFV. We have already tested (rac)-8,14dihydroxy EFV on 5XFAD mice, a model of Alzheimer's disease. Herein, we treated 5XFAD mice with (rac)-7,8dihydroxy EFV. In both sexes, the treatment modestly activated CYP46A1 in the brain and increased brain content of acetyl-CoA and acetylcholine. Male mice also showed a decrease in the brain levels of insoluble amyloid ß40 peptides. However, the treatment had no effect on animal performance in different memory tasks. Thus, the overall brain effects of (rac)-7,8dihydroxy EFV were weaker than those of EFV and (rac)-8,14dihydroxy EFV and did not lead to cognitive improvements as were seen in treatments with EFV and (rac)-8,14dihydroxy EFV. An in vitro study assessing CYP46A1 activation in co-incubations with EFV and (rac)-7,8dihydroxy EFV or (rac)-8,14dihydroxy EFV was carried out and provided insight into the compound doses and ratios that could be used for in vivo co-treatments with EFV and its dihydroxymetabolite.
Asunto(s)
Enfermedad de Alzheimer , Fármacos Anti-VIH , Infecciones por VIH , Femenino , Masculino , Ratones , Animales , Colesterol 24-Hidroxilasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Benzoxazinas/química , Alquinos/uso terapéutico , Ciclopropanos/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Transcriptasa Inversa/farmacología , Fármacos Anti-VIH/uso terapéuticoRESUMEN
The retina and brain are separated from the systemic circulation by the anatomical barriers, which are permeable (the outer blood-retinal barrier) and impermeable (the blood-brain and inner blood-retina barriers) to cholesterol. Herein we investigated whether whole-body cholesterol maintenance affects cholesterol homeostasis in the retina and brain. We used hamsters, whose whole-body cholesterol handling is more similar to those in humans than in mice, and conducted separate administrations of deuterated water and deuterated cholesterol. We assessed the quantitative significance of the retinal and brain pathways of cholesterol input and compared the results with those from our previous studies in mice. The utility of the measurements in the plasma of deuterated 24-hydroxycholesterol, the major cholesterol elimination product from the brain, was investigated as well. We established that despite a sevenfold higher serum LDL to HDL ratio and other cholesterol-related differences, in situ biosynthesis remained the major source of cholesterol for hamster retina, although its quantitative significance was reduced to 53% as compared to 72%-78% in the mouse retina. In the brain, the principal pathway of cholesterol input was also the same, in situ biosynthesis, accounting for 94% of the total brain cholesterol input (96% in mice); the interspecies differences pertained to the absolute rates of the total cholesterol input and turnover. We documented the correlations between deuterium enrichments of the brain 24-hydroxycholesterol, brain cholesterol, and plasma 24-hydroxycholesterol, which suggested that deuterium enrichment of plasma 24-hydroxycholesteol could be an in vivo marker of cholesterol elimination and turnover in the brain.
Asunto(s)
Colesterol , Hidroxicolesteroles , Humanos , Cricetinae , Ratones , Animales , Deuterio/metabolismo , Colesterol/metabolismo , Retina/metabolismo , Encéfalo/metabolismo , HomeostasisRESUMEN
CYP46A1 is a CNS-specific enzyme, which eliminates cholesterol from the brain and retina by metabolism to 24-hydroxycholesterol, thus contributing to cholesterol homeostasis in both organs. 2-Hydroxypropyl-ß-cyclodextrin (HPCD), a Food and Drug Administration-approved formulation vehicle, is currently being investigated off-label for treatment of various diseases, including retinal diseases. HPCD was shown to lower retinal cholesterol content in mice but had not yet been evaluated for its therapeutic benefits. Herein, we put Cyp46a1-/- mice on high fat cholesterol-enriched diet from 1 to 14 months of age (control group) and at 12 months of age, started to treat a group of these animals with HPCD until the age of 14 months. We found that as compared with mature and regular chow-fed Cyp46a1-/- mice, control group had about 6-fold increase in the retinal total cholesterol content, focal cholesterol and lipid deposition in the photoreceptor-Bruch's membrane region, and retinal macrophage activation. In addition, aged animals had cholesterol crystals at the photoreceptor-retinal pigment epithelium interface and changes in the Bruch's membrane ultrastructure. HPCD treatment mitigated all these manifestations of retinal cholesterol dyshomeostasis and altered the abundance of six groups of proteins (genetic information transfer, vesicular transport, and cytoskeletal organization, endocytosis and lysosomal processing, unfolded protein removal, lipid homeostasis, and Wnt signaling). Thus, aged Cyp46a1-/- mice on high fat cholesterol-enriched diet revealed pathological changes secondary to retinal cholesterol overload and supported further studies of HPCD as a potential therapeutic for age-related macular degeneration and diabetic retinopathy associated with retinal cholesterol dyshomeostasis.
Asunto(s)
Degeneración Macular , Retina , Ratones , Animales , 2-Hidroxipropil-beta-Ciclodextrina , Colesterol 24-Hidroxilasa/metabolismo , Retina/metabolismo , Degeneración Macular/metabolismo , Modelos Animales de Enfermedad , Colesterol/metabolismoRESUMEN
AIMS/HYPOTHESIS: Hyper-reflective crystalline deposits found in retinal lesions have been suggested to predict the progression of diabetic retinopathy, but the nature of these structures remains unknown. METHODS: Scanning electron microscopy and immunohistochemistry were used to identify cholesterol crystals (CCs) in human donor, pig and mouse tissue. The effects of CCs were analysed in bovine retinal endothelial cells in vitro and in db/db mice in vivo using quantitative RT-PCR, bulk RNA sequencing, and cell death and permeability assays. Cholesterol homeostasis was determined using 2H2O and 2H7-cholesterol. RESULTS: We identified hyper-reflective crystalline deposits in human diabetic retina as CCs. Similarly, CCs were found in the retina of a diabetic mouse model and a high-cholesterol diet-fed pig model. Cell culture studies demonstrated that treatment of retinal cells with CCs can recapitulate all major pathogenic mechanisms leading to diabetic retinopathy, including inflammation, cell death and breakdown of the blood-retinal barrier. Fibrates, statins and α-cyclodextrin effectively dissolved CCs present in in vitro models of diabetic retinopathy, and prevented CC-induced endothelial pathology. Treatment of a diabetic mouse model with α-cyclodextrin reduced cholesterol levels and CC formation in the retina, and prevented diabetic retinopathy. CONCLUSIONS/INTERPRETATION: We established that cholesterol accumulation and CC formation are a unifying pathogenic mechanism in the development of diabetic retinopathy.
Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , alfa-Ciclodextrinas , Animales , Bovinos , Ratones , Humanos , Porcinos , Retinopatía Diabética/metabolismo , alfa-Ciclodextrinas/efectos adversos , alfa-Ciclodextrinas/metabolismo , Células Endoteliales/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Modelos Animales de Enfermedad , Colesterol/metabolismoRESUMEN
Of the 57 cytochrome P450 enzymes found in humans, at least 30 have ocular tissues as an expression site. Yet knowledge of the roles of these P450s in the eye is limited, in part because only very few P450 laboratories expanded their research interests to studies of the eye. Hence the goal of this review is to bring attention of the P450 community to the eye and encourage more ocular studies. This review is also intended to be educational for eye researchers and encourage their collaborations with P450 experts. The review starts with a description of the eye, a fascinating sensory organ, and is followed by sections on ocular P450 localizations, specifics of drug delivery to the eye, and individual P450s, which are grouped and presented based on their substrate preferences. In sections describing individual P450s, available eye-relevant information is summarized and concluded by the suggestions on the opportunities in ocular studies of the discussed enzymes. Potential challenges are addressed as well. The conclusion section outlines several practical suggestions on how to initiate eye-related research. SIGNIFICANCE STATEMENT: This review focuses on the cytochrome P450 enzymes in the eye to encourage their ocular investigations and collaborations between P450 and eye researchers.
Asunto(s)
Sistema Enzimático del Citocromo P-450 , Ojo , Humanos , Sistema Enzimático del Citocromo P-450/metabolismo , Ojo/metabolismoRESUMEN
(S)-Efavirenz (EFV) is a reverse transcriptase inhibitor and an antiviral drug. In addition, (S)-EFV can interact off target with CYP46A1, the major cholesterol hydroxylating enzyme in the mammalian brain, and allosterically activate CYP46A1 at a small dose in mice and humans. Studies with purified CYP46A1 identified two allosteric sites on the enzyme surface, one for (S)-EFV and the second site for L-glutamate (Glu), a neurotransmitter that also activates CYP46A1 either alone or in the presence of (S)-EFV. Previously, we found that racemic (rac)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, (S)-8-hydroxyefavirenz, and (rac)-8,14-dihydroxyefavirenz, compounds with the hydroxylation positions corresponding to the metabolism of (S)-EFV in the liver, activated CYP46A1 in vitro. Yet, these compounds differed from (S)-EFV in how they allosterically interacted with CYP46A1. Herein, we further characterized (rac)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, (S)-8-hydroxyefavirenz, and (rac)-8,14-dihydroxyefavirenz, and, in addition, (R)-EFV, (S)-7-hydroxyefavirenz, (rac)-7,8-dihydroxyefavirenz, (S)-7,8-dihydroxyefavirenz, and (S)-8,14-dihydroxyefavirenz for activation and binding to CYP46A1 in vitro. We found that the spatial configuration of all tested compounds neither affected the CYP46A1 activation nor the sites of binding to CYP46A1. Yet, the hydroxylation position determined whether the hydroxylated metabolite interacted with the allosteric site for (S)-EFV [(R)-EFV, (rac)-7,8-dihydroxyefavirenz, and (S)-7,8-dihydroxyefavirenz], L-Glu [(rac)- and (S)-8,14-dihydroxyefavirenz], or both [(rac)-7-hydroxyefavirenz, (S)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, and (S)-8-hydroxyefavirenz]. This difference in binding to the allosteric sites determined, in turn, how CYP46A1 activity was changed in the coincubations with (S)-EFV and either its metabolite or L-Glu. The results suggest EFV metabolites that could be more potent for CYP46A1 activation in vivo than (S)-EFV. SIGNIFICANCE STATEMENT: This study found that not only efavirenz but also all its hydroxylated metabolites allosterically activate CYP46A1 in vitro. The enzyme activation depended on the hydroxylation position but not the metabolite spatial configuration and involved either one or two allosteric sites-for efavirenz, L-glutamate, or both. The results suggest that the hydroxylated efavirenz metabolites may differ from efavirenz in how they interact with the CYP46A1 allosteric and active sites.
Asunto(s)
Benzoxazinas , Colesterol 24-Hidroxilasa , Ácido Glutámico , Alquinos , Animales , Benzoxazinas/química , Colesterol 24-Hidroxilasa/química , Colesterol 24-Hidroxilasa/metabolismo , Ciclopropanos , Ácido Glutámico/metabolismo , Hidroxilación , RatonesRESUMEN
Apolipoprotein D (APOD) is an atypical apolipoprotein with unknown significance for retinal structure and function. Conversely, apolipoprotein E (APOE) is a typical apolipoprotein with established roles in retinal cholesterol transport. Herein, we immunolocalized APOD to the photoreceptor inner segments and conducted ophthalmic characterizations of ApoD-/- and ApoD-/-ApoE-/- mice. ApoD-/- mice had normal levels of retinal sterols but changes in the chorioretinal blood vessels and impaired retinal function. The whole-body glucose disposal was impaired in this genotype but the retinal glucose metabolism was unchanged. ApoD-/-ApoE-/- mice had altered sterol profile in the retina but apparently normal chorioretinal vasculature and function. The whole-body glucose disposal and retinal glucose utilization were enhanced in this genotype. OB-Rb, both leptin and APOD receptor, was found to be expressed in the photoreceptor inner segments and was at increased abundance in the ApoD-/- and ApoD-/-ApoE-/- retinas. Retinal levels of Glut4 and Cd36, the glucose transporter and scavenger receptor, respectively, were increased as well, thus linking APOD to retinal glucose and fatty acid metabolism and suggesting the APOD-OB-Rb-GLUT4/CD36 axis. In vivo isotopic labeling, transmission electron microscopy, and retinal proteomics provided additional insights into the mechanism underlying the retinal phenotypes of ApoD-/- and ApoD-/-ApoE-/- mice. Collectively, our data suggest that the APOD roles in the retina are context specific and could determine retinal glucose fluxes into different pathways. APOD and APOE do not play redundant, complementary or opposing roles in the retina, rather their interplay is more complex and reflects retinal responses elicited by lack of these apolipoproteins.
Asunto(s)
Apolipoproteínas D/metabolismo , Retina/metabolismo , Animales , Apolipoproteínas D/deficiencia , Apolipoproteínas D/genética , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Antígenos CD36/metabolismo , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Femenino , Genotipo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Marcaje Isotópico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteómica , Retina/patología , Esteroles/análisis , Esteroles/metabolismoRESUMEN
Efavirenz (EFV), an FDA-approved anti-HIV drug, has off-target binding to CYP46A1, the CNS enzyme which converts cholesterol to 24-hydroxycholesterol. At small doses, EFV allosterically activates CYP46A1 in mice and humans and mitigates some of the Alzheimer's disease manifestations in 5XFAD mice, an animal model. Notably, in vitro, all phase 1 EFV hydroxymetabolites activate CYP46A1 as well and bind either to the allosteric site for EFV, neurotransmitters or both. Herein, we treated 5XFAD mice with 8,14-dihydroxyEFV, the binder to the neurotransmitter allosteric site, which elicits the highest CYP46A1 activation in vitro. We found that treated animals of both sexes had activation of CYP46A1 and cholesterol turnover in the brain, decreased content of the amyloid beta 42 peptide, increased levels of acetyl-CoA and acetylcholine, and altered expression of the brain marker proteins. In addition, male mice had improved performance in the Barnes Maze test and increased expression of the acetylcholine-related genes. This work expands our knowledge of the beneficial CYP46A1 activation effects and demonstrates that 8,14-dihydroxyEFV crosses the blood-brain barrier and has therapeutic potential as a CYP46A1 activator.
Asunto(s)
Acetilcolina , Enfermedad de Alzheimer , Encéfalo , Colesterol 24-Hidroxilasa , Acetilcolina/análisis , Acetilcolina/metabolismo , Alquinos/metabolismo , Alquinos/farmacología , Alquinos/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Benzoxazinas/metabolismo , Benzoxazinas/farmacología , Benzoxazinas/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Colesterol/metabolismo , Colesterol 24-Hidroxilasa/genética , Colesterol 24-Hidroxilasa/metabolismo , Colesterol 24-Hidroxilasa/farmacología , Ciclopropanos/metabolismo , Ciclopropanos/farmacología , Ciclopropanos/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Masculino , RatonesRESUMEN
CYP46A1 is the cytochrome P450 enzyme that converts cholesterol to 24-hydroxycholesterol, a cholesterol elimination product and a potent liver X receptor (LXR) ligand. We conducted retinal characterizations of Cyp46a1-/- mice that had normal fasting blood glucose levels but up to a 1.8-fold increase in retinal cholesterol. The retina of Cyp46a1-/- mice exhibited venous beading and tortuosity, microglia/macrophage activation, and increased vascular permeability, features commonly associated with diabetic retinopathy. The expression of Lxrα and Lxrß was increased in both the whole Cyp46a1-/- retina and retinal macroglia/macrophages. The LXR-target genes were affected as well, primarily in activated microglial cells and macrophages. In the latter, the LXR-transactivated genes (Abca1, Abcg1, Apod, Apoe, Mylip, and Arg2) were up-regulated; similarly, there was an up-regulation of the LXR-transrepressed genes (Ccl2, Ptgs2, Cxcl1, Il1b, Il6, Nos2, and Tnfa). For comparison, gene expression was investigated in bone marrow-derived macrophages from Cyp46a1-/- mice as well as retinal and bone marrow-derived macrophages from Cyp27a1-/- and Cyp27a1-/-Cyp46a1-/- mice. CYP46A1 expression was detected in retinal endothelial cells, and this expression was increased in the proinflammatory environment. Retinal Cyp46a1-/- phosphoproteome revealed altered phosphorylation of 30 different proteins, including tight junction protein zonula occludens 1 and aquaporin 4. Collectively, the data obtained establish metabolic and regulatory significance of CYP46A1 for the retina and suggest pharmacologic activation of CYP46A1 as a potential therapeutic approach to dyslipidemia-induced retinal damage.
Asunto(s)
Colesterol 24-Hidroxilasa/deficiencia , Colesterol/metabolismo , Diabetes Mellitus Experimental , Retinopatía Diabética , Proteínas del Ojo , Microglía , Retina , Vasos Retinianos , Animales , Colesterol/genética , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/enzimología , Retinopatía Diabética/genética , Retinopatía Diabética/patología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Ratones , Ratones Noqueados , Microglía/enzimología , Microglía/patología , Retina/enzimología , Retina/patología , Vasos Retinianos/anomalías , Vasos Retinianos/metabolismoRESUMEN
Efavirenz (EFV) is an anti-HIV drug, and cytochrome P450 46A1 (CYP46A1) is the major brain cholesterol hydroxylase. Previously, we discovered that EFV activates CYP46A1 and improves behavioral performance in 5XFAD mice, an Alzheimer's disease model. Herein, the unbiased omics and other approaches were used to study 5XFAD mice in the amyloid-decreasing paradigm of CYP46A1 activation by EFV. These approaches revealed increases in the brain levels of postsynaptic density protein 95, gephyrin, synaptophysin, synapsin, glial fibrillary acidic protein, and CYP46A1 and documented altered expression and phosphorylation of 66 genes and 77 proteins, respectively. The data obtained pointed to EFV effects at the synaptic level, plasmin-depended amyloid clearance, inflammation and microglia phenotype, oxidative stress and cellular hypoxia, autophagy and ubiquitin-proteasome systems as well as apoptosis. These effects could be realized in part via changes in the Ca2+-, small GTPase, and catenin signaling. A model is proposed, in which CYP46A1-dependent lipid raft rearrangement and subsequent decrease of protein phosphorylation are central in EFV effects and explain behavioral improvements in EFV-treated 5XFAD mice.-Petrov, A. M., Mast, N., Li, Y., Pikuleva, I. A. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment.
Asunto(s)
Benzoxazinas/farmacología , Encéfalo/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Inductores de las Enzimas del Citocromo P-450/farmacología , Redes y Vías Metabólicas , Transcriptoma , Alquinos , Animales , Encéfalo/efectos de los fármacos , Ciclopropanos , Ratones , Ratones Endogámicos C57BL , Transducción de SeñalRESUMEN
BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is a rare genetic disorder, characterised by chronic diarrhoea, xanthomas, cataracts, and neurological deterioration. CTX is caused by CYP27A1 deficiency, which leads to abnormal cholesterol and bile acid metabolism. Urinary bile acid profiling (increased m/z 627: glucuronide-5ß-cholestane-pentol) serves as diagnostic screening for CTX. However, this led to a false positive CTX diagnosis in two patients, who had received total intravenous anaesthesia (TIVA) with propofol. METHODS: To determine the influence of propofol on bile acid profiling, 10 urinary samples and 2 blood samples were collected after TIVA with propofol Fresenius 7 to 10 mg/kg/h from 12 subjects undergoing scoliosis correction. Urinary bile acids were analysed using flow injection negative electrospray mass spectrometry. Propofol binding to recombinant CYP27A1, the effects of propofol on recombinant CYP27A1 activity, and CYP27A1 expression in liver organoids were investigated using spectral binding, enzyme activity assays, and qPCR, respectively. Accurate masses were determined with high-resolution mass spectrometry. RESULTS: Abnormal urinary profiles were identified in all subjects after TIVA, with a trend correlating propofol dose per kilogramme and m/z 627 peak intensity. Propofol only induced a weak CYP27A1 response in the spectral binding assay, minimally affected CYP27A1 activity and did not affect CYP27A1 expression. The accurate mass of m/z 627 induced by propofol differed >10 PPM from m/z 627 observed in CTX. CONCLUSIONS: TIVA with propofol invariably led to a urinary profile misleadingly suggestive of CTX, but not through CYP27A1 inhibition. To avoid further misdiagnoses, propofol administration should be considered when interpreting urinary bile acid profiles.
Asunto(s)
Anestésicos Intravenosos/farmacología , Ácidos y Sales Biliares/metabolismo , Bilis/efectos de los fármacos , Propofol/farmacología , Xantomatosis Cerebrotendinosa/diagnóstico , Adolescente , Anestésicos Intravenosos/administración & dosificación , Bilis/metabolismo , Niño , Preescolar , Colestanotriol 26-Monooxigenasa/efectos de los fármacos , Colestanotriol 26-Monooxigenasa/genética , Colesterol/metabolismo , Errores Diagnósticos , Femenino , Humanos , Masculino , Espectrometría de Masas , Propofol/administración & dosificación , Estudios Prospectivos , Xantomatosis Cerebrotendinosa/genéticaRESUMEN
Apolipoprotein E (APOE) is a component of lipid-transporting particles and a recognition ligand for receptors, which bind these particles. The APOE isoform ε2 is a risk factor for age-related macular degeneration; nevertheless, APOE absence in humans and mice does not significantly affect the retina. We found that retinal cholesterol biosynthesis and the levels of retinal cholesterol were increased in Apoe-/- mice, whereas cholesterol elimination by metabolism was decreased. No focal cholesterol deposits were observed in the Apoe-/- retina. Retinal proteomics identified the most abundant cholesterol-related proteins in WT mice and revealed that, of these cholesterol-related proteins, only APOA4 had increased expression in the Apoe-/- retina. In addition, there were changes in retinal abundance of proteins involved in proinflammatory and antiinflammatory responses, cellular cytoskeleton maintenance, vesicular traffic, and retinal iron homeostasis. The data obtained indicate that when APOE is absent, particles containing APOA1, APOA4, and APOJ still transport cholesterol in the intraretinal space, but these particles are not taken up by retinal cells. Therefore, cholesterol biosynthesis inside retinal cells increase, whereas metabolism to oxysterols decreases to prevent cells from cholesterol depletion. These and other compensatory changes underlie only a minor retinal phenotype in Apoe-/- mice.
Asunto(s)
Apolipoproteínas E/sangre , Apolipoproteínas E/metabolismo , Retina/metabolismo , Animales , Apolipoproteínas A/metabolismo , Proteínas de Unión al Calcio/metabolismo , Colesterol/sangre , Colesterol/metabolismo , Clusterina/metabolismo , Citoesqueleto/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Hierro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en TándemRESUMEN
Cytochrome P450 27A1 (CYP27A1) is a ubiquitous enzyme that hydroxylates cholesterol and other sterols. Complete CYP27A1 deficiency owing to genetic mutations is detrimental to human health, whereas 50% of activity retention is not and does not affect the whole body cholesterol levels. CYP27A1 is considered a potential therapeutic target in breast cancer and age-related neurodegenerative diseases; however, CYP27A1 inhibition should be ≤50%. Herein, 131 pharmaceuticals were tested for their effect on CYP27A1-mediated cholesterol 27-hydroxylation by in vitro enzyme assay. Of them, 14 drugs inhibited CYP27A1 by ≥75% and were evaluated for in vitro binding to the enzyme active site and for inhibition constants. All drugs except one (dasatinib) elicited a spectral response in CYP27A1 and had Ki values for cholesterol 27-hydroxylation either in the submicromolar (clevidipine, delavirdine, etravirine, felodipine, nicardipine, nilotinib, and sorafenib) or low micromolar range (abiratone, candesartan, celecoxib, dasatinib, nilvadipine, nimodipine, and regorafenib). Clevidipine, felodipine, nicardipine, nilvadipine, and nimodipine have the same 1,4-dihydropyridine scaffold and are indicated for hypertension. We used two of these antihypertensives (felodipine and nilvadipine) for administration to mice at a 1-mg/kg of body weight dose, daily, for 7 days. Mouse 27-hydroxycholesterol levels in the plasma, brain, and liver were reduced, whereas tissue levels of total cholesterol were unchanged. Structure-activity relationships within the 1,4-dihydropyridine scaffold were investigated, and features important for CY27A1 inhibition were identified. We confirmed our previous finding that CYP27A1 is a druggable enzyme and found additional drugs as well as the scaffold with potential for partial CYP27A1 inhibition in humans.
Asunto(s)
Antihipertensivos/farmacología , Colestanotriol 26-Monooxigenasa/antagonistas & inhibidores , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Hidroxicolesteroles/metabolismo , Animales , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/métodos , Felodipino/análogos & derivados , Felodipino/farmacología , Femenino , Ratones Endogámicos C57BLRESUMEN
Cytochrome P450 46A1 (CYP46A1, cholesterol 24-hydroxylase) is the enzyme responsible for the majority of cholesterol elimination from the brain. Previously, we found that the anti-HIV drug efavirenz (EFV) can pharmacologically activate CYP46A1 in mice. Herein, we investigated whether CYP46A1 could also be activated by endogenous compounds, including major neurotransmitters. In vitro experiments with purified recombinant CYP46A1 indicated that CYP46A1 is activated by l-glutamate (l-Glu), l-aspartate, γ-aminobutyric acid, and acetylcholine, with l-Glu eliciting the highest increase (3-fold) in CYP46A1-mediated cholesterol 24-hydroxylation. We also found that l-Glu and other activating neurotransmitters bind to the same site on the CYP46A1 surface, which differs from the EFV-binding site. The other principal differences between EFV and l-Glu in CYP46A1 activation include an apparent lack of l-Glu binding to the P450 active site and different pathways of signal transduction from the allosteric site to the active site. EFV and l-Glu similarly increased the CYP46A1 kcat, the rate of the "fast" phase of the enzyme reduction by the redox partner NADPH-cytochrome P450 oxidoreductase, and the amount of P450 reduced. Spectral titrations with cholesterol, in the presence of EFV or l-Glu, suggest that water displacement from the heme iron can be affected in activator-bound CYP46A1. Moreover, EFV and l-Glu synergistically activated CYP46A1. Collectively, our in vitro data, along with those from previous cell culture and in vivo studies by others, suggest that l-Glu-induced CYP46A1 activation is of physiological relevance.
Asunto(s)
Acetilcolina/metabolismo , Ácido Aspártico/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Ácido Glutámico/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/agonistas , Ácido gamma-Aminobutírico/metabolismo , Acetilcolina/química , Alquinos , Regulación Alostérica/efectos de los fármacos , Sustitución de Aminoácidos , Fármacos Anti-VIH/química , Fármacos Anti-VIH/metabolismo , Fármacos Anti-VIH/farmacología , Ácido Aspártico/química , Benzoxazinas/química , Benzoxazinas/metabolismo , Benzoxazinas/farmacología , Sitios de Unión , Biocatálisis/efectos de los fármacos , Colesterol 24-Hidroxilasa/química , Colesterol 24-Hidroxilasa/genética , Ciclopropanos , Medición de Intercambio de Deuterio , Activación Enzimática/efectos de los fármacos , Ácido Glutámico/química , Ligandos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Ácido gamma-Aminobutírico/químicaRESUMEN
Cytochrome P450 27A1 (CYP27A1 or sterol 27-hydroxylase) is a ubiquitous, multifunctional enzyme catalyzing regio- and stereospecific hydroxylation of different sterols. In humans, complete CYP27A1 deficiency leads to cerebrotendinous xanthomatosis or nodule formation in tendons and brain (preferentially in the cerebellum) rich in cholesterol and cholestanol, the 5α-saturated analog of cholesterol. In Cyp27a1-/- mice, xanthomas are not formed, despite a significant cholestanol increase in the brain and cerebellum. The mechanism behind cholestanol production has been clarified, yet little is known about its metabolism, except that CYP27A1 might metabolize cholestanol. It also is unclear why CYP27A1 deficiency results in preferential cholestanol accumulation in the cerebellum. We hypothesized that cholestanol might be metabolized by CYP46A1, the principal cholesterol 24-hydroxylase in the brain. We quantified sterols along with CYP27A1 and CYP46A1 in mouse models (Cyp27a1-/-, Cyp46a1-/-, Cyp27a1-/-Cyp46a1-/-, and two wild type strains) and human brain specimens. In vitro experiments with purified P450s were conducted as well. We demonstrate that CYP46A1 is involved in cholestanol removal from the brain and that several factors contribute to the preferential increase in cholestanol in the cerebellum arising from CYP27A1 deficiency. These factors include (i) low cerebellar abundance of CYP46A1 and high cerebellar abundance of CYP27A1, the lack of which probably selectively increases the cerebellar cholestanol production; (ii) spatial separation in the cerebellum of cholesterol/cholestanol-metabolizing P450s from a pool of metabolically available cholestanol; and (iii) weak cerebellar regulation of cholesterol biosynthesis. We identified a new physiological role of CYP46A1, an important brain enzyme and cytochrome P450 that could be activated pharmacologically.
Asunto(s)
Encéfalo/metabolismo , Colestanotriol 26-Monooxigenasa/metabolismo , Colestanol/metabolismo , Colesterol/metabolismo , Animales , Cerebelo/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Colestenonas/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Femenino , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Statins, a class of cholesterol-lowering drugs, are currently being investigated for treatment of age-related macular degeneration, a retinal disease. Herein, retinal and serum concentrations of four statins (atorvastatin, simvastatin, pravastatin, and rosuvastatin) were evaluated after mice were given a single drug dose of 60 mg/kg body weight. All statins, except rosuvastatin, were detected in the retina: atorvastatin and pravastatin at 1.6 pmol and simvastatin at 4.1 pmol. Serum statin concentrations (pmol/ml) were 223 (simvastatin), 1401 (atorvastatin), 2792 (pravastatin), and 9050 (rosuvastatin). Simvastatin was then administered to mice daily for 6 weeks at 60 mg/kg body weight. Simvastatin treatment reduced serum cholesterol levels by 18% and retinal content of cholesterol and lathosterol (but not desmosterol) by 24% and 21%, respectively. The relative contributions of retinal cholesterol biosynthesis and retinal uptake of serum cholesterol to total retinal cholesterol input were changed as well. These contributions were 79% and 21%, respectively, in vehicle-treated mice and 69% and 31%, respectively, in simvastatin-treated mice. Thus, simvastatin treatment lowered retinal cholesterol because a compensatory upregulation of retinal uptake of serum cholesterol was not sufficient to overcome the effect of inhibited retinal biosynthesis. Simultaneously, simvastatin-treated mice had a 2.9-fold increase in retinal expression of Cd36, the major receptor clearing oxidized low-density lipoproteins from Bruch's membrane. Notably, simvastatin treatment essentially did not affect brain cholesterol homeostasis. Our results reveal the statin effect on the retinal and brain cholesterol input and are of value for future clinical investigations of statins as potential therapeutics for age-related macular degeneration.
Asunto(s)
Colesterol/sangre , Retina/efectos de los fármacos , Retina/metabolismo , Simvastatina/farmacología , Animales , Colesterol/farmacología , Femenino , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lipoproteínas LDL/sangre , Degeneración Macular/sangre , Degeneración Macular/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba/efectos de los fármacosRESUMEN
The process of vision is impossible without the photoreceptor cells, which have a unique structure and specific maintenance of cholesterol. Herein we report on the previously unrecognized cholesterol-related pathway in the retina discovered during follow-up characterizations of Cyp27a1(-/-)Cyp46a1(-/-) mice. These animals have retinal hypercholesterolemia and convert excess retinal cholesterol into cholesterol esters, normally present in the retina in very small amounts. We established that in the Cyp27a1(-/-)Cyp46a1(-/-) retina, cholesterol esters are generated by and accumulate in the photoreceptor outer segments (OS), which is the retinal layer with the lowest cholesterol content. Mouse OS were also found to express the cholesterol-esterifying enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT1), but not lecithin-cholesterol acyltransferase (LCAT), and to differ from humans in retinal expression of ACAT1. Nevertheless, cholesterol esters were discovered to be abundant in human OS. We suggest a mechanism for cholesterol ester accumulation in the OS and that activity impairment of ACAT1 in humans may underlie the development of subretinal drusenoid deposits, a hallmark of age-related macular degeneration, which is a common blinding disease. We generated Cyp27a1(-/-)Cyp46a1(-/-)Acat1(-/-) mice, characterized their retina by different imaging modalities, and confirmed that unesterified cholesterol does accumulate in their OS and that there is photoreceptor apoptosis and OS degeneration in this line. Our results provide insights into the retinal response to local hypercholesterolemia and the retinal significance of cholesterol esterification, which could be cell-specific and both beneficial and detrimental for retinal structure and function.