Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(21): 14479-14492, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38572736

RESUMEN

The sensitization of surface-anchored organic dyes on semiconductor nanocrystals through energy transfer mechanisms has received increasing attention owing to their potential applications in photodynamic therapy, photocatalysis, and photon upconversion. Here, we investigate the sensitization mechanisms through visible-light excitation of two nanohybrids based on CsPbBr3 perovskite nanocrystals (NC) functionalized with borondipyrromethene (BODIPY) dyes, specifically 8-(4-carboxyphenyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BDP) and 8-(4-carboxyphenyl)-2,6-diiodo-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (I2-BDP), named as NC@BDP and NC@I2-BDP, respectively. The ability of I2-BDP dyes to extract hot hole carriers from the perovskite nanocrystals is comprehensively investigated by combining steady-state and time-resolved fluorescence as well as femtosecond transient absorption spectroscopy with spectroelectrochemistry and quantum chemical theoretical calculations, which together provide a complete overview of the phenomena that take place in the nanohybrid. Förster resonance energy transfer (FRET) dominates (82%) the photosensitization of the singlet excited state of BDP in the NC@BDP nanohybrid with a rate constant of 3.8 ± 0.2 × 1010 s-1, while charge transfer (64%) mediated by an ultrafast charge transfer rate constant of 1.00 ± 0.08 × 1012 s-1 from hot states and hole transfer from the band edge is found to be mainly responsible for the photosensitization of the triplet excited state of I2-BDP in the NC@I2-BDP nanohybrid. These findings suggest that the NC@I2-BDP nanohybrid is a unique energy transfer photocatalyst for oxidizing α-terpinene to ascaridole through singlet oxygen formation.

2.
Small ; : e2402371, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597692

RESUMEN

Quantum dot (QD) light-emitting diodes (QLEDs) are promising for next-generation displays, but suffer from carrier imbalance arising from lower hole injection compared to electron injection. A defect engineering strategy is reported to tackle transport limitations in nickel oxide-based inorganic hole-injection layers (HILs) and find that hole injection is able to enhance in high-performance InP QLEDs using the newly designed material. Through optoelectronic simulations, how the electronic properties of NiOx affect hole injection efficiency into an InP QD layer, finding that efficient hole injection depends on lowering the hole injection barrier and enhancing the acceptor density of NiOx is explored. Li doping and oxygen enriching are identified as effective strategies to control intrinsic and extrinsic defects in NiOx, thereby increasing acceptor density, as evidenced by density functional theory calculations and experimental validation. With fine-tuned inorganic HIL, InP QLEDs exhibit a luminance of 45 200 cd m-2 and an external quantum efficiency of 19.9%, surpassing previous inorganic HIL-based QLEDs. This study provides a path to designing inorganic materials for more efficient and sustainable lighting and display technologies.

3.
Nano Lett ; 23(10): 4298-4303, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37166106

RESUMEN

Solution-processed colloidal quantum dots (CQDs) are promising materials for photodetectors operating in the short-wavelength infrared region (SWIR). Devices typically rely on CQD-based hole transport layers (HTL), such as CQDs treated using 1,2-ethanedithiol. Herein, we find that these HTL materials exhibit low carrier mobility, limiting the photodiode response speed. We develop instead inverted (p-i-n) SWIR photodetectors operating at 1370 nm, employing NiOx as the HTL, ultimately enabling 4× shorter fall times in photodiodes (∼800 ns for EDT and ∼200 ns for NiOx). Optoelectronic simulations reveal that the high carrier mobility of NiOx enhances the electric field in the active layer, decreasing the overall transport time and increasing photodetector response time.

4.
Angew Chem Int Ed Engl ; 63(8): e202316733, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38170453

RESUMEN

Heavy-metal-free III-V colloidal quantum dots (CQDs) are promising materials for solution-processed short-wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum-size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large-diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to ≥ ${\ge }$ 1400 nm light. Here we adopt solvent engineering to facilitate a diffusion-limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate-halide co-passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III-V CQD photodetectors in this spectral region.

5.
Nano Lett ; 22(16): 6802-6807, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35969869

RESUMEN

Infrared photodetection enables depth imaging techniques such as structured light and time-of-flight. Traditional photodetectors rely on silicon (Si); however, the bandgap of Si limits photodetection to wavelengths shorter than 1100 nm. Photodetector operation centered at 1370 nm benefits from lower sunlight interference due to atmospheric absorption. Here, we report 1370 nm-operating colloidal quantum dot (CQD) photodetectors and evaluate their outdoor performance. We develop a surface-ligand engineering strategy to tune the electronic properties of each CQD layer and fabricate photodetectors in an inverted (PIN) architecture. The strategy enables photodetectors with an external quantum efficiency of 75% and a low dark current (1 µA/cm2). Outdoor testing demonstrates that CQD-based photodetectors combined with a 10 nm-line width bandpass filter centered at 1370 nm achieve over 2 orders of magnitude (140× at incident intensity 1 µW/cm2) higher signal-to-background ratio than do Si-based photodetectors that use an analogous bandpass filter centered at 905 nm.

6.
J Am Chem Soc ; 144(45): 20923-20930, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36327099

RESUMEN

InP-based quantum dot (QD) light-emitting diodes (QLEDs) provide a heavy-metal-free route to size-tuned LEDs having high efficiency. The stability of QLEDs may be enhanced by replacing organic hole-injection layers (HILs) with inorganic layers. However, inorganic HILs reported to date suffer from inefficient hole injection, the result of their shallow work functions. Here, we investigate the tuning of the work function of nickel oxide (NiOx) HILs using self-assembled molecules (SAMs). Density functional theory simulations and near-edge X-ray absorption fine structure put a particular focus onto the molecular orientation of the SAMs in tuning the work function of the NiOx HIL. We find that orientation plays an even stronger role than does the underlying molecular dipole itself: SAMs having the strongest electron-withdrawing nitro group (NO2), despite having a high intrinsic dipole, show limited work function tuning, something we assign to their orientation parallel to the NiOx surface. We further find that the NO2 group─which delocalizes electrons over the molecule by resonance─induces a deep lowest unoccupied molecular orbital level that accepts electrons from QDs, producing luminescence quenching. In contrast, SAMs containing a trifluoromethyl group exhibit an angled orientation relative to the NiOx surface, better activating hole injection into the active layer without inducing luminescence quenching. We report an external quantum efficiency (EQE) of 18.8%─the highest EQE among inorganic HIL-based QLEDs (including Cd-based QDs)─in InP QLEDs employing inorganic HILs.

7.
Phys Chem Chem Phys ; 24(34): 20348-20356, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35980224

RESUMEN

Shikonin, a naphthoquinone dye, is a molecule of colour of natural origin, whose peculiar properties have not yet been fully rationalized. Its core structure consists of a di-hydroxy-naphthoquinone with an additional non-aromatic hydroxy group. From a comprehensive study involving fast spectroscopic techniques (fs-TA and fs-UC) and TDDFT electronic structure calculations on shikonin (Shk) and its derivatives 5-hydroxy-1,4-naphthoquinone (5HNQ), 5,8-diacetoxy-1,4-naphthoquinone (DiAc), 5,8-dihidroxy-1,4-naphthoquinone (DHNQ) and acetylshikonin, AcShk, it is shown that intramolecular excited state proton transfer (ESIPT) is present and is determinant in the deactivation of the hydroxy containing molecules. This is mirrored by the dominance of the internal conversion deactivation channel. In Shk, the non-aromatic hydroxy group determines the preferred conformer in both the ground- and excited-state, as reflected in the doubling of the fluorescence quantum yield value of this molecule relative to DHNQ. From fs-UC, a kinetic isotopic effect of 1.7 was obtained for DHNQ.


Asunto(s)
Naftoquinonas , Teoría Cuántica , Modelos Moleculares , Protones
8.
Molecules ; 27(22)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36432168

RESUMEN

Fluorescence-based probes represent a powerful tool for noninvasive imaging of living systems in real time and with a high temporal and spatial resolution. Amongst several known fluorophores, 3-difluoroborodipyrromethene (BODIPY) derivatives have become a cornerstone for innovative fluorescent labelling applications, mainly due to their advantageous features including their facile synthesis, structural versatility and exceptional photophysical properties. In this context, we report a BODIPY-based fluorescent probe for imaging of lysosomes in living cells. The BODIPY derivative displayed a remarkable fluorescence enhancement at low pH values with a pKa* of 3.1. In vitro studies by confocal microscopy in HeLa cells demonstrated that the compound was able to permeate cell membrane and selectively label lysosome whilst remaining innocuous to the cell culture at the maximum concentration tested. Herein, the BODIPY derivative holds the promise of investigating lysosomal dynamics and function in living cells through fluorescence imaging.


Asunto(s)
Colorantes Fluorescentes , Lisosomas , Humanos , Colorantes Fluorescentes/química , Células HeLa , Lisosomas/metabolismo , Concentración de Iones de Hidrógeno
9.
Nat Mater ; 19(4): 412-418, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32042078

RESUMEN

The composition of perovskite has been optimized combinatorially such that it often contains six components (AxByC1-x-yPbXzY3-z) in state-of-art perovskite solar cells. Questions remain regarding the precise role of each component, and the lack of a mechanistic explanation limits the practical exploration of the large and growing chemical space. Here, aided by transient photoluminescence microscopy, we find that, in perovskite single crystals, carrier diffusivity is in fact independent of composition. In polycrystalline thin films, the different compositions play a crucial role in carrier diffusion. We report that methylammonium (MA)-based films show a high carrier diffusivity of 0.047 cm2 s-1, while MA-free mixed caesium-formamidinium (CsFA) films exhibit an order of magnitude lower diffusivity. Elemental composition studies show that CsFA grains display a graded composition. This curtails electron diffusion in these films, as seen in both vertical carrier transport and surface potential studies. Incorporation of MA leads to a uniform grain core-to-edge composition, giving rise to a diffusivity of 0.034 cm2 s-1 in CsMAFA films. A model that invokes competing crystallization processes allows us to account for this finding, and suggests further strategies to achieve homogeneous crystallization for the benefit of perovskite optoelectronics.

10.
Bioorg Chem ; 107: 104596, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33421953

RESUMEN

A series of tacrine - benzothiazole hybrids incorporate inhibitors of acetylcholinesterase (AChE), amyloid ß (Aß) aggregation and mitochondrial enzyme ABAD, whose interaction with Aß leads to mitochondrial dysfunction, into a single molecule. In vitro, several of 25 final compounds exerted excellent anti-AChE properties and interesting capabilities to block Aß aggregation. The best derivative of the series could be considered 10w that was found to be highly potent and selective towards AChE with the IC50 value in nanomolar range. Moreover, the same drug candidate exerted absolutely the best results of the series against ABAD, decreasing its activity by 23% at 100 µM concentration. Regarding the cytotoxicity profile of highlighted compound, it roughly matched that of its parent compound - 6-chlorotacrine. Finally, 10w was forwarded for in vivo scopolamine-induced amnesia experiment consisting of Morris Water Maze test, where it demonstrated mild procognitive effect. Taking into account all in vitro and in vivo data, highlighted derivative 10w could be considered as the lead structure worthy of further investigation.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Benzotiazoles/farmacología , Colinérgicos/farmacología , Inhibidores Enzimáticos/farmacología , Fármacos Neuroprotectores/farmacología , Tacrina/farmacología , 3-Hidroxiacil-CoA Deshidrogenasas/antagonistas & inhibidores , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Benzotiazoles/química , Colinérgicos/síntesis química , Colinérgicos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Tacrina/química
11.
Nano Lett ; 20(7): 5284-5291, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32543860

RESUMEN

Shortwave infrared colloidal quantum dots (SWIR-CQDs) are semiconductors capable of harvesting across the AM1.5G solar spectrum. Today's SWIR-CQD solar cells rely on spin-coating; however, these films exhibit cracking once thickness exceeds ∼500 nm. We posited that a blade-coating strategy could enable thick QD films. We developed a ligand exchange with an additional resolvation step that enabled the dispersion of SWIR-CQDs. We then engineered a quaternary ink that combined high-viscosity solvents with short QD stabilizing ligands. This ink, blade-coated over a mild heating bed, formed micron-thick SWIR-CQD films. These SWIR-CQD solar cells achieved short-circuit current densities (Jsc) that reach 39 mA cm-2, corresponding to the harvest of 60% of total photons incident under AM1.5G illumination. External quantum efficiency measurements reveal both the first exciton peak and the closest Fabry-Perot resonance peak reaching approximately 80%-this is the highest unbiased EQE reported beyond 1400 nm in a solution-processed semiconductor.

12.
Nano Lett ; 20(2): 1468-1474, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32004007

RESUMEN

We report how the direction of quantum dot (QD) lasing can be engineered by exploiting high-symmetry points in plasmonic nanoparticle (NP) lattices. The nanolaser architecture consists of CdSe-CdS core-shell QD layers conformally coated on two-dimensional square arrays of Ag NPs. Using waveguide-surface lattice resonances (W-SLRs) near the Δ point in the Brillouin zone as optical feedback, we achieved lasing from the gain in CdS shells at off-normal emission angles. Changing the periodicity of the plasmonic lattices enables other high-symmetry points (Γ or M) of the lattice to overlap with the QD shell emission, which facilitates tuning of the lasing direction. We also increased the thickness of the QD layer to introduce higher-order W-SLR modes with additional avoided crossings in the band structure, which expands the selection of cavity modes for any desired lasing emission angle.

13.
Molecules ; 26(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069210

RESUMEN

A set of 3-ethynylaryl coumarin dyes with mono, bithiophenes and the fused variant, thieno [3,2-b] thiophene, as well as an alkylated benzotriazole unit were prepared and tested for dye-sensitized solar cells (DSSCs). For comparison purposes, the variation of the substitution pattern at the coumarin unit was analyzed with the natural product 6,7-dihydroxycoumarin (Esculetin) as well as 5,7-dihydroxycomarin in the case of the bithiophene dye. Crucial steps for extension of the conjugated system involved Sonogashira reaction yielding highly fluorescent molecules. Spectroscopic characterization showed that the extension of conjugation via the alkynyl bridge resulted in a strong red-shift of absorption and emission spectra (in solution) of approximately 73-79 nm and 52-89 nm, respectively, relative to 6,7-dimethoxy-4-methylcoumarin (λabs = 341 nm and λem = 410 nm). Theoretical density functional theory (DFT) calculations show that the Lowest Unoccupied Molecular Orbital (LUMO) is mostly centered in the cyanoacrylic anchor unit, corroborating the high intramolecular charge transfer (ICT) character of the electronic transition. Photovoltaic performance evaluation reveals that the thieno [3,2-b] thiophene unit present in dye 8 leads to the best sensitizer of the set, with a conversion efficiency (η = 2.00%), best VOC (367 mV) and second best Jsc (9.28 mA·cm-2), surpassed only by dye 9b (Jsc = 10.19 mA·cm-2). This high photocurrent value can be attributed to increased donor ability of the 5,7-dimethoxy unit when compared to the 6,7 equivalent (9b).

14.
Chemistry ; 26(8): 1697, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31922634

RESUMEN

Invited for the cover of this issue is the group of Torres at the University of Madrid. The image of the cover of this issue depicts cancer cells being destroyed by reactive singlet oxygen produced by ruthenium phthalocyanine glycoconjugates under red light. The work, developed at the Universities of Madrid, Aveiro, Lisbon and Coimbra, describes ruthenium phthalocyanines as powerful bladder cancer PDT agents. Read the full text of the article at 10.1002/chem.201903546.


Asunto(s)
Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/metabolismo , Humanos , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/uso terapéutico , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
15.
Chemistry ; 26(8): 1789-1799, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31605633

RESUMEN

The synthesis of ruthenium(II) phthalocyanines (RuPcs) endowed with one carbohydrate unit-that is, glucose, galactose and mannose-and a dimethylsulfoxide (DMSO) ligand at the two axial coordination sites, respectively, is described. Two series of compounds, one unsubstituted at the periphery, and the other one bearing eight PEG chains at the isoindole meta-positions, have been prepared. The presence of the axial DMSO unit significantly increases the phthalocyanine singlet oxygen quantum yields, related to other comparable RuPcs. The compounds have been evaluated for PDT treatment in bladder cancer cells. In vitro studies have revealed high phototoxicity for RuPcs unsubstituted at their periphery. The phototoxicity of PEG-substituted RuPcs has been considerably improved by repeated light irradiation. The choice of the axial carbohydrate introduced little differences in the cellular uptake for both series of photosensitizers, but the phototoxic effects were considerably higher for compounds bearing mannose units.


Asunto(s)
Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/síntesis química , Oxígeno Singlete/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Luz , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Espectrofotometría , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo
16.
Inorg Chem ; 59(12): 8220-8230, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32469212

RESUMEN

The synthesis of five novel cyclometalated platinum(II) compounds containing five different alkynyl-chromophores was achieved by the reaction of the previously synthesized Pt-Cl cyclometalated compound (1) with the corresponding RC≡CH by a Sonogashira reaction. It was observed that the spectral and photophysical characteristics of the cyclometalated platinum(II) complexes (Pt-Ar) are essentially associated with the platinum-cyclometalated unit. Room-temperature emission of the Pt-Ar complexes was attributed to phosphorescence in agreement with DFT calculations. Broad nanosecond (ns)-transient absorption spectra were observed with decays approximately identical to those obtained from the emission of the triplet state. From the femtosecond-transient absorption (fs-TA) data, two main excited-state decay components were identified: one in the order of a few picoseconds was assigned to fast intersystem crossing to populate the triplet excited-state and the second (hundreds of ns) was associated with the decay of the transient triplet state. In general, efficient singlet oxygen photosensitization quantum yields were observed from the triplet state of these complexes.

17.
J Sports Sci ; 37(6): 692-700, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30326773

RESUMEN

Football is central to the lives of countless individuals around the globe. While most of the attention of those passionate about the sport is focused on the players, football referees are often just as important in shaping the outcome of the games. Therefore, research is increasingly examining the role of referees. Even so, our understanding of the factors that create an excellent football referee is still scarce. Based on our analysis of the opinions of 24 football experts, we demonstrate the multidimensionality of excellence in the performance of football referees. From a Categorical Principal Components Analysis (CatPCA), we were able to pinpoint that football referee excellence is shaped by three distinct dimensions: individual preparation, game preparation and game management. Additionally, we were able to see if these perceptions were different from individuals "within" the game versus those "outside" the game. Namely, we used CatPCA to graphically display the main correlations between the latent dimensions of football refereeing performance and the "inside" and "outside" perspective of the game. The findings of our work contribute towards the knowledge of the factors that shape football referee excellence, while also highlighting areas in need of additional research attention.


Asunto(s)
Conocimiento , Competencia Profesional , Fútbol , Humanos
18.
Inorg Chem ; 57(21): 13423-13430, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30351079

RESUMEN

An electronic spectral and photophysical characterization of three gold(I) complexes containing heterocyclic chromophores differing in the number and arrangement of pyridine rings (pyridine, bipyridine, and terpyridine, with the acronyms pD, bD, and tD respectively) was performed. Quantum yields of fluorescence, internal conversion and triplet state formation, together with the rate constants for singlet to triplet intersystem crossing, S1 ∼ ∼ ∼ S0 internal conversion and fluorescence were measured in order to equate the impact of fast triplet state formation on the amount of triplets formed. The results showed a correlation between the increase on the measured decay values of S1 (leading to the main formation of T1) and the increase in the charge transfer (CT) character of the lowest energy transition, as evaluated from the orthogonality of the frontier orbitals. The measured triplet state quantum yields range from ∼50-60% to 70%, whereas the intersystem crossing rate constants differ by almost 2 orders of magnitude, from 9.4 × 109 s-1 for tD to 8.1 × 1011 s-1 for bD. This constitutes an evidence for the existence of a correlation between the intersystem crossing and the internal conversion mechanisms.

19.
Chemphyschem ; 18(5): 564-575, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-27992104

RESUMEN

Steady-state and time-resolved absorption and fluorescence measurements are reported for Congo Red (CR) in aqueous and dimethylsulfoxide (DMSO) solutions. The very low fluorescence quantum yield (≈10-4 ) for CR in dilute solutions together with the absence of a triplet state indicates that internal conversion is the dominant deactivation route with more than 99.99 % of the quanta loss (attributed to the energy gap law for radiationless transitions). Although no direct evidence for trans-cis photoisomerization was obtained from absorption or fluorescence data, the global analysis of fs-transient absorption data indicates the presence of a photoproduct with a lifetime of ≈170 ps that is suggested to be associated with such a process. Spectral data for more concentrated CR solutions indicate the presence of oblique or twisted J-type aggregates. These results are compared with spectra for CR in the solid state (sodium salt) and intercalated in a layered double hydroxide via a one-step co-precipitation route. Powder XRD and electronic spectral data for the nanohybrid indicate that the CR guest molecules are intercalated as a monolayer consisting of slipped cofacial J-type aggregates.

20.
Photochem Photobiol Sci ; 15(9): 1124-1137, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27529675

RESUMEN

The photophysics and reactivity of two tetraphenylborate salts and triphenylborane have been studied using ultrafast transient absorption, steady-state fluorescence, electron paramagnetic resonance with spin trapping, and DFT calculations. The singlet excited state of tetraarylborates exhibit extended π-orbital coupling between two adjacent aryl groups. The maximum fluorescence band, as well as the transient absorption bands centered at 560 nm (τ = 1.05 ns) and 680 nm (τ = 4.35 ns) are influenced by solvent viscosity and polarity, indicative of a twisted intramolecular charge transfer (TICT) state. Orbital contour plots of the HOMO and LUMO orbitals of the tetraarylboron compounds support the existence of electron delocalization between two aryl groups in the LUMO. This TICT-state and aryl-aryl electron extension is not observed for the trigonal arylboron compound, in which excited π-orbital coupling only occurs between the boron atom and one aryl group, which restricts the twist motion of the aryl-boron bond. The excited triplet state is deactivated primarily through aryl-boron bond cleavage, yielding aryl and diphenylboryl radicals. In the presence of oxygen, this photochemistry results in phenoxyl and diphenylboroxyl radicals, as confirmed by EPR spectroscopy of spin trapped radical adducts. The TICT transition and radical generation is not expected for BoDIPY molecules where the rotational vibration of the B-aryl bond is rigid, restricting changes in the geometric structure. In this sense, this work contributes to the development of new BoDIPY derivatives where the TICT transition may be observed for aryl ligands with free rotational vibrations in the BoDIPY structure.


Asunto(s)
Compuestos de Boro/química , Procesos Fotoquímicos , Estructura Molecular , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA