Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Metab ; 4(5): 349-62, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17055784

RESUMEN

Huntington's disease (HD) is a fatal, dominantly inherited disorder caused by polyglutamine repeat expansion in the huntingtin (htt) gene. Here, we observe that HD mice develop hypothermia associated with impaired activation of brown adipose tissue (BAT). Although sympathetic stimulation of PPARgamma coactivator 1alpha (PGC-1alpha) was intact in BAT of HD mice, uncoupling protein 1 (UCP-1) induction was blunted. In cultured cells, expression of mutant htt suppressed UCP-1 promoter activity; this was reversed by PGC-1alpha expression. HD mice showed reduced food intake and increased energy expenditure, with dysfunctional BAT mitochondria. PGC-1alpha is a known regulator of mitochondrial function; here, we document reduced expression of PGC-1alpha target genes in HD patient and mouse striatum. Mitochondria of HD mouse brain show reduced oxygen consumption rates. Finally, HD striatal neurons expressing exogenous PGC-1alpha were resistant to 3-nitropropionic acid treatment. Altered PGC-1alpha function may thus link transcription dysregulation and mitochondrial dysfunction in HD.


Asunto(s)
Tejido Adiposo Pardo/fisiopatología , Regulación de la Temperatura Corporal/genética , Proteínas de Choque Térmico/metabolismo , Enfermedad de Huntington/etiología , Factores de Transcripción/metabolismo , Animales , Temperatura Corporal/genética , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas de Choque Térmico/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal/genética , Factores de Transcripción/genética , Transcripción Genética
2.
PLoS Genet ; 4(11): e1000257, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19008940

RESUMEN

At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting "instability elements," and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF -- a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Inestabilidad Genómica , Mutación , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/metabolismo , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido , Animales , Ataxina-7 , Sitios de Unión , Factor de Unión a CCCTC , Metilación de ADN , Proteínas de Unión al ADN/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/genética
3.
Neuron ; 41(1): 153-63, 2004 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-14715142

RESUMEN

Stimulation of adenylyl cyclase in the hippocampus is critical for memory formation. However, generation of cAMP signals within an optimal range for memory may require a balance between stimulatory and inhibitory mechanisms. The role of adenylyl cyclase inhibitory mechanisms for memory has not been addressed. One of the mechanisms for inhibition of adenylyl cyclase is through activation of G(i)-coupled receptors, a mechanism that could serve as a constraint on memory formation. Here we report that ablation of G(ialpha1) by gene disruption increases hippocampal adenylyl cyclase activity and enhances LTP in area CA1. Furthermore, gene ablation of G(ialpha1) or antisense oligonucleotide-mediated depletion of G(ialpha1) disrupted hippocampus-dependent memory. We conclude that G(ialpha1) provides a critical mechanism for tonic inhibition of adenylyl cyclase activity in the hippocampus. We hypothesize that loss of G(ialpha1) amplifies the responsiveness of CA1 postsynaptic neurons to stimuli that strengthen synaptic efficacy, thereby diminishing synapse-specific plasticity required for new memory formation.


Asunto(s)
Adenilil Ciclasas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Hipocampo/enzimología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Animales , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Eliminación de Gen , Hipocampo/fisiología , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Toxina del Pertussis/farmacología
4.
Neuron ; 36(4): 713-26, 2002 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-12441059

RESUMEN

Adenylyl cyclase types 1 (AC1) and 8 (AC8), the two major calmodulin-stimulated adenylyl cyclases in the brain, couple NMDA receptor activation to cAMP signaling pathways. Cyclic AMP signaling pathways are important for many brain functions, such as learning and memory, drug addiction, and development. Here we show that wild-type, AC1, AC8, or AC1&8 double knockout (DKO) mice were indistinguishable in tests of acute pain, whereas behavioral responses to peripheral injection of two inflammatory stimuli, formalin and complete Freund's adjuvant, were reduced or abolished in AC1&8 DKO mice. AC1 and AC8 are highly expressed in the anterior cingulate cortex (ACC), and contribute to inflammation-induced activation of CREB. Intra-ACC administration of forskolin rescued behavioral allodynia defective in the AC1&8 DKO mice. Our studies suggest that AC1 and AC8 in the ACC selectively contribute to behavioral allodynia.


Asunto(s)
Adenilil Ciclasas/deficiencia , Encéfalo/enzimología , Calmodulina/metabolismo , AMP Cíclico/metabolismo , Hiperalgesia/genética , Vías Nerviosas/enzimología , Dolor/genética , Adenilil Ciclasas/genética , Animales , Conducta Animal/fisiología , Encéfalo/fisiopatología , AMP Cíclico/análogos & derivados , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Adyuvante de Freund , Hiperalgesia/enzimología , Hiperalgesia/fisiopatología , Masculino , Ratones , Ratones Noqueados , Vías Nerviosas/fisiopatología , Dolor/enzimología , Dolor/fisiopatología , Dimensión del Dolor , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Nat Neurosci ; 7(6): 635-42, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15133516

RESUMEN

Cyclic AMP is a positive regulator of synaptic plasticity and is required for several forms of hippocampus-dependent memory including recognition memory. The type I adenylyl cyclase, Adcy1 (also known as AC1), is crucial in memory formation because it couples Ca(2+) to cyclic AMP increases in the hippocampus. Because Adcy1 is neurospecific, it is a potential pharmacological target for increasing cAMP specifically in the brain and for improving memory. We have generated transgenic mice that overexpress Adcy1 in the forebrain using the Camk2a (also known as alpha-CaMKII) promoter. These mice showed elevated long-term potentiation (LTP), increased memory for object recognition and slower rates of extinction for contextual memory. The increase in recognition memory and lower rates of contextual memory extinction may be due to enhanced extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling, which is elevated in mice that overexpress Adcy1.


Asunto(s)
Adenilil Ciclasas/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Potenciación a Largo Plazo , Prosencéfalo/metabolismo , Reconocimiento en Psicología/fisiología , Adenilil Ciclasas/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/biosíntesis , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Línea Celular , Humanos , Potenciación a Largo Plazo/genética , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas
6.
Front Genet ; 8: 113, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28919908

RESUMEN

The inactivation of ribosomal protein S6 kinase 1 (S6K1) recapitulates aspects of caloric restriction and mTORC1 inhibition to achieve prolonged longevity in invertebrate and mouse models. In addition to delaying normative aging, inhibition of mTORC1 extends the shortened lifespan of yeast, fly, and mouse models with severe mitochondrial disease. Here we tested whether disruption of S6K1 can recapitulate the beneficial effects of mTORC1 inhibition in the Ndufs4 knockout (NKO) mouse model of Leigh Syndrome caused by Complex I deficiency. These NKO mice develop profound neurodegeneration resulting in brain lesions and death around 50-60 days of age. Our results show that liver-specific, as well as whole body, S6K1 deletion modestly prolongs survival and delays onset of neurological symptoms in NKO mice. In contrast, we observed no survival benefit in NKO mice specifically disrupted for S6K1 in neurons or adipocytes. Body weight was reduced in WT mice upon disruption of S6K1 in adipocytes or whole body, but not altered when S6K1 was disrupted only in neurons or liver. Taken together, these data indicate that decreased S6K1 activity in liver is sufficient to delay the neurological and survival defects caused by deficiency of Complex I and suggest that mTOR signaling can modulate mitochondrial disease and metabolism via cell non-autonomous mechanisms.

8.
J Neurosci ; 25(16): 4118-26, 2005 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-15843614

RESUMEN

The importance of the cAMP signaling pathway in the modulation of ethanol sensitivity has been suggested by studies in organisms from Drosophila melanogaster to man. However, the involvement of specific isoforms of adenylyl cyclase (AC), the molecule that converts ATP to cAMP, has not been systemically determined in vivo. Because AC1 and AC8 are the only AC isoforms stimulated by calcium, and ethanol modulates calcium flux by the NMDA receptor, we hypothesized that these ACs would be important in the neural response to ethanol. AC1 knock-out (KO) mice and double knock-out (DKO) mice with genetic deletion of both AC1 and AC8 display substantially increased sensitivity to ethanol-induced sedation compared with wild-type (WT) mice, whereas AC8 KO mice are only minimally more sensitive. In contrast, AC8 KO and DKO mice, but not AC1 KO mice, demonstrate decreased voluntary ethanol consumption compared with WT mice. DKO mice do not display increased sleep time compared with WT mice after administration of ketamine or pentobarbital, indicating that the mechanism of enhanced ethanol sensitivity in these mice is likely distinct from the antagonism of ethanol of the NMDA receptor and potentiation of the GABA(A) receptor. Ethanol does not enhance calcium-stimulated AC activity, but the ethanol-induced phosphorylation of a discrete subset of protein kinase A (PKA) substrates is compromised in the brains of DKO mice. These results indicate that the unique activation of PKA signaling mediated by the calcium-stimulated ACs is an important component of the neuronal response to ethanol.


Asunto(s)
Adenilil Ciclasas/metabolismo , Calcio/farmacología , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Neuronas/efectos de los fármacos , Adenilil Ciclasas/deficiencia , Análisis de Varianza , Animales , Ataxia/fisiopatología , Conducta Animal , Western Blotting/métodos , Depresores del Sistema Nervioso Central/sangre , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Etanol/sangre , Antagonistas de Aminoácidos Excitadores/farmacología , Preferencias Alimentarias/efectos de los fármacos , Agonistas del GABA/farmacología , Isoxazoles/farmacología , Ketamina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Pentobarbital/farmacología , Fosforilación/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Quinina/farmacología , Tiempo de Reacción/efectos de los fármacos , Reflejo/efectos de los fármacos , Sacarina/farmacología , Sueño/efectos de los fármacos , Sueño/genética
9.
Elife ; 52016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27549339

RESUMEN

The FDA approved drug rapamycin increases lifespan in rodents and delays age-related dysfunction in rodents and humans. Nevertheless, important questions remain regarding the optimal dose, duration, and mechanisms of action in the context of healthy aging. Here we show that 3 months of rapamycin treatment is sufficient to increase life expectancy by up to 60% and improve measures of healthspan in middle-aged mice. This transient treatment is also associated with a remodeling of the microbiome, including dramatically increased prevalence of segmented filamentous bacteria in the small intestine. We also define a dose in female mice that does not extend lifespan, but is associated with a striking shift in cancer prevalence toward aggressive hematopoietic cancers and away from non-hematopoietic malignancies. These data suggest that a short-term rapamycin treatment late in life has persistent effects that can robustly delay aging, influence cancer prevalence, and modulate the microbiome.


Asunto(s)
Antibacterianos/administración & dosificación , Antibióticos Antineoplásicos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Longevidad/efectos de los fármacos , Neoplasias/prevención & control , Sirolimus/administración & dosificación , Animales , Ratones
10.
Nat Med ; 22(1): 37-45, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26642438

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which encodes a polyglutamine tract in the HTT protein. We found that peroxisome proliferator-activated receptor delta (PPAR-δ) interacts with HTT and that mutant HTT represses PPAR-δ-mediated transactivation. Increased PPAR-δ transactivation ameliorated mitochondrial dysfunction and improved cell survival of neurons from mouse models of HD. Expression of dominant-negative PPAR-δ in the central nervous system of mice was sufficient to induce motor dysfunction, neurodegeneration, mitochondrial abnormalities and transcriptional alterations that recapitulated HD-like phenotypes. Expression of dominant-negative PPAR-δ specifically in the striatum of medium spiny neurons in mice yielded HD-like motor phenotypes, accompanied by striatal neuron loss. In mouse models of HD, pharmacologic activation of PPAR-δ using the agonist KD3010 improved motor function, reduced neurodegeneration and increased survival. PPAR-δ activation also reduced HTT-induced neurotoxicity in vitro and in medium spiny-like neurons generated from stem cells derived from individuals with HD, indicating that PPAR-δ activation may be beneficial in HD and related disorders.


Asunto(s)
Enfermedad de Huntington/genética , Neostriado/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Animales , Muerte Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Técnicas In Vitro , Células Madre Pluripotentes Inducidas , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Movimiento/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , PPAR delta/genética , PPAR delta/metabolismo , Piperazinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Citoplasmáticos y Nucleares/agonistas , Sulfonamidas/farmacología
11.
J Neurosci ; 23(30): 9710-8, 2003 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-14585998

RESUMEN

Mossy fiber/CA3 long-term potentiation (LTP) is hypothesized to depend on cAMP signals generated by Ca2+-stimulated adenylyl cyclases AC1 or AC8. AC1 gene knock-out mice (AC1-/-) show a partial reduction in mossy fiber LTP, suggesting that either AC8 activity is also critical for mossy fiber LTP or that there is a component of mossy fiber LTP that is independent of CaM-activated adenylyl cyclases. To address this issue, mossy fiber LTP was examined in hippocampal slices from AC8-/- and AC1-/- x AC8-/- double knock-out mice (DKO). Despite the fact that AC8 contributes only a small fraction of the Ca2+-stimulated adenylyl cyclase activity in the hippocampus and is less sensitive to Ca2+ than AC1, AC8-/- mice exhibited mossy fiber LTP defects comparable with AC1-/- and DKO mice. Furthermore, short-term plasticity was disrupted in AC8-/- mice but not in AC1-/- mice. Because AC1 is not localized at the excitatory synapses in hippocampal neurons, we hypothesized that AC8 may be targeted to synapses, in which higher synaptic-specific Ca2+ increases occur. Here, we report that AC8 accumulates in puncta of dendrites and axons in hippocampal neurons and colocalizes with synaptic marker proteins. These data indicate that both synaptic and nonsynaptic cAMP signals, generated by different Ca2+-stimulated adenylyl cyclases, are required for mossy fiber LTP.


Asunto(s)
Adenilil Ciclasas/metabolismo , Potenciación a Largo Plazo/fisiología , Fibras Musgosas del Hipocampo/enzimología , Sinapsis/enzimología , Adenilil Ciclasas/biosíntesis , Adenilil Ciclasas/deficiencia , Adenilil Ciclasas/genética , Animales , Axones/metabolismo , Biomarcadores/análisis , Calcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Dendritas/metabolismo , Perros , Expresión Génica , Ácido Glutámico/metabolismo , Humanos , Técnicas In Vitro , Riñón/citología , Riñón/metabolismo , Potenciación a Largo Plazo/genética , Ratones , Ratones Noqueados , Ratones Mutantes , Neuronas/enzimología , Neuronas/metabolismo , Transfección
12.
Nat Commun ; 5: 3483, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24662282

RESUMEN

Recent studies have propagated the model that the mitochondrial unfolded protein response (UPR(mt)) is causal for lifespan extension from inhibition of the electron transport chain (ETC) in Caenorhabditis elegans. Here we report a genome-wide RNAi screen for negative regulators of the UPR(mt). Lifespan analysis of nineteen RNAi clones that induce the hsp-6p::gfp reporter demonstrate differential effects on longevity. Deletion of atfs-1, which is required for induction of the UPR(mt), fails to prevent lifespan extension from knockdown of two genes identified in our screen or following knockdown of the ETC gene cco-1. RNAi knockdown of atfs-1 also has no effect on lifespan extension caused by mutation of the ETC gene isp-1. Constitutive activation of the UPR(mt) by gain of function mutations in atfs-1 fails to extend lifespan. These observations identify several new factors that promote mitochondrial homoeostasis and demonstrate that the UPR(mt), as currently defined, is neither necessary nor sufficient for lifespan extension.


Asunto(s)
Caenorhabditis elegans/fisiología , Longevidad/fisiología , Mitocondrias/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética
14.
Neuron ; 70(6): 1071-84, 2011 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-21689595

RESUMEN

Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder caused by CAG/polyglutamine repeat expansions in the ataxin-7 gene. Ataxin-7 is a component of two different transcription coactivator complexes, and recent work indicates that disease protein normal function is altered in polyglutamine neurodegeneration. Given this, we studied how ataxin-7 gene expression is regulated. The ataxin-7 repeat and translation start site are flanked by binding sites for CTCF, a highly conserved multifunctional transcription regulator. When we analyzed this region, we discovered an adjacent alternative promoter and a convergently transcribed antisense noncoding RNA, SCAANT1. To understand how CTCF regulates ataxin-7 gene expression, we introduced ataxin-7 mini-genes into mice, and found that CTCF is required for SCAANT1 expression. Loss of SCAANT1 derepressed ataxin-7 sense transcription in a cis-dependent fashion and was accompanied by chromatin remodeling. Discovery of this pathway underscores the importance of altered epigenetic regulation for disease pathology at repeat loci exhibiting bidirectional transcription.


Asunto(s)
Mapeo Cromosómico , Regulación de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , ARN sin Sentido/metabolismo , Proteínas Represoras/metabolismo , Animales , Ataxina-7 , Factor de Unión a CCCTC , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , ARN no Traducido/metabolismo , Proteínas Represoras/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA