Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35135876

RESUMEN

Gasdermins are a family of pore-forming proteins controlling an inflammatory cell death reaction in the mammalian immune system. The pore-forming ability of the gasdermin proteins is released by proteolytic cleavage with the removal of their inhibitory C-terminal domain. Recently, gasdermin-like proteins have been discovered in fungi and characterized as cell death-inducing toxins in the context of conspecific non-self-discrimination (allorecognition). Although functional analogies have been established between mammalian and fungal gasdermins, the molecular pathways regulating gasdermin activity in fungi remain largely unknown. Here, we characterize a gasdermin-based cell death reaction controlled by the het-Q allorecognition genes in the filamentous fungus Podospora anserina We show that the cytotoxic activity of the HET-Q1 gasdermin is controlled by proteolysis. HET-Q1 loses a ∼5-kDa C-terminal fragment during the cell death reaction in the presence of a subtilisin-like serine protease termed HET-Q2. Mutational analyses and successful reconstitution of the cell death reaction in heterologous hosts (Saccharomyces cerevisiae and human 293T cells) suggest that HET-Q2 directly cleaves HET-Q1 to induce cell death. By analyzing the genomic landscape of het-Q1 homologs in fungi, we uncovered that the vast majority of the gasdermin genes are clustered with protease-encoding genes. These HET-Q2-like proteins carry either subtilisin-like or caspase-related proteases, which, in some cases, correspond to the N-terminal effector domain of nucleotide-binding and oligomerization-like receptor proteins. This study thus reveals the proteolytic regulation of gasdermins in fungi and establishes evolutionary parallels between fungal and mammalian gasdermin-dependent cell death pathways.


Asunto(s)
Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Podospora/metabolismo , Apoptosis/fisiología , Muerte Celular , Supervivencia Celular , Proteínas Fúngicas/genética , Células HEK293 , Humanos , Podospora/genética , Proteolisis , Saccharomyces cerevisiae , Subtilisina
2.
J Biol Chem ; 299(8): 105011, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414150

RESUMEN

The pentose phosphate pathway (PPP) is critical for anabolism and biomass production. Here we show that the essential function of PPP in yeast is the synthesis of phosphoribosyl pyrophosphate (PRPP) catalyzed by PRPP-synthetase. Using combinations of yeast mutants, we found that a mildly decreased synthesis of PRPP affects biomass production, resulting in reduced cell size, while a more severe decrease ends up affecting yeast doubling time. We establish that it is PRPP itself that is limiting in invalid PRPP-synthetase mutants and that the resulting metabolic and growth defect can be bypassed by proper supplementation of the medium with ribose-containing precursors or by the expression of bacterial or human PRPP-synthetase. In addition, using documented pathologic human hyperactive forms of PRPP-synthetase, we show that intracellular PRPP as well as its derived products can be increased in both human and yeast cells, and we describe the ensuing metabolic and physiological consequences. Finally, we found that PRPP consumption appears to take place "on demand" by the various PRPP-utilizing pathways, as shown by blocking or increasing the flux in specific PRPP-consuming metabolic routes. Overall, our work reveals important similarities between human and yeast for both synthesis and consumption of PRPP.


Asunto(s)
Fosforribosil Pirofosfato , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Bacterias , Vía de Pentosa Fosfato , Ligasas
3.
J Am Soc Nephrol ; 33(1): 121-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725108

RESUMEN

BACKGROUND: The reported association of mTOR-inhibitor (mTORi) treatment with a lower incidence of cytomegalovirus (CMV) infection in kidney transplant recipients (KTR) who are CMV seropositive (R+) remains unexplained. METHODS: The incidence of CMV infection and T-cell profile was compared between KTRs treated with mTORis and mycophenolic acid (MPA), and in vitro mTORi effects on T-cell phenotype and functions were analyzed. RESULTS: In KTRs who were R+ and treated with MPA, both αß and γδ T cells displayed a more dysfunctional phenotype (PD-1+, CD85j+) at day 0 of transplantation in the 16 KTRs with severe CMV infection, as compared with the 17 KTRs without or with spontaneously resolving CMV infection. In patients treated with mTORis (n=27), the proportion of PD-1+ and CD85j+ αß and γδ T cells decreased, when compared with patients treated with MPA (n=44), as did the frequency and severity of CMV infections. mTORi treatment also led to higher proportions of late-differentiated and cytotoxic γδ T cells and IFNγ-producing and cytotoxic αß T cells. In vitro, mTORis increased proliferation, viability, and CMV-induced IFNγ production of T cells and decreased PD-1 and CD85j expression in T cells, which shifted the T cells to a more efficient EOMESlow Hobithigh profile. In γδ T cells, the mTORi effect was related to increased TCR signaling. CONCLUSION: Severe CMV replication is associated with a dysfunctional T-cell profile and mTORis improve T-cell fitness along with better control of CMV. A dysfunctional T-cell phenotype could serve as a new biomarker to predict post-transplantation infection and to stratify patients who should benefit from mTORi treatment. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Proportion of CMV Seropositive Kidney Transplant Recipients Who Will Develop a CMV Infection When Treated With an Immunosuppressive Regimen Including Everolimus and Reduced Dose of Cyclosporine Versus an Immunosuppressive Regimen With Mycophenolic Acid and Standard Dose of Cyclosporine A (EVERCMV), NCT02328963.


Asunto(s)
Infecciones por Citomegalovirus/prevención & control , Trasplante de Riñón/efectos adversos , Inhibidores mTOR/uso terapéutico , Subgrupos de Linfocitos T/efectos de los fármacos , Anciano , Antibacterianos/uso terapéutico , Antígenos CD/metabolismo , Técnicas de Cultivo de Célula , Infecciones por Citomegalovirus/epidemiología , Infecciones por Citomegalovirus/patología , Femenino , Humanos , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Masculino , Persona de Mediana Edad , Ácido Micofenólico/uso terapéutico , Receptor de Muerte Celular Programada 1/metabolismo , Subgrupos de Linfocitos T/metabolismo
4.
J Biol Chem ; 294(3): 805-815, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30478173

RESUMEN

5-Aminoimidazole-4-carboxamide 1-ß-d-ribofuranoside (AICAR, or acadesine) is a precursor of the monophosphate derivative 5-amino-4-imidazole carboxamide ribonucleoside 5'-phosphate (ZMP), an intermediate in de novo purine biosynthesis. AICAR proved to have promising anti-proliferative properties, although the molecular basis of its toxicity is poorly understood. To exert cytotoxicity, AICAR needs to be metabolized, but the AICAR-derived toxic metabolite was not identified. Here, we show that ZMP is the major toxic derivative of AICAR in yeast and establish that its metabolization to succinyl-ZMP, ZDP, or ZTP (di- and triphosphate derivatives of AICAR) strongly reduced its toxicity. Affinity chromatography identified 74 ZMP-binding proteins, including 41 that were found neither as AMP nor as AICAR or succinyl-ZMP binders. Overexpression of karyopherin-ß Kap123, one of the ZMP-specific binders, partially rescued AICAR toxicity. Quantitative proteomic analyses revealed 57 proteins significantly less abundant on nuclei-enriched fractions from AICAR-fed cells, this effect being compensated by overexpression of KAP123 for 15 of them. These results reveal nuclear protein trafficking as a function affected by AICAR.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Proteómica , Ribonucleótidos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Aminoimidazol Carboxamida/farmacocinética , Aminoimidazol Carboxamida/farmacología , Núcleo Celular/química , Núcleo Celular/genética , Cromatografía de Afinidad , Ribonucleótidos/farmacocinética , Ribonucleótidos/farmacología , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
J Biol Chem ; 294(32): 11980-11991, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31160323

RESUMEN

The reversible adenine phosphoribosyltransferase enzyme (APRT) is essential for purine homeostasis in prokaryotes and eukaryotes. In humans, APRT (hAPRT) is the only enzyme known to produce AMP in cells from dietary adenine. APRT can also process adenine analogs, which are involved in plant development or neuronal homeostasis. However, the molecular mechanism underlying substrate specificity of APRT and catalysis in both directions of the reaction remains poorly understood. Here we present the crystal structures of hAPRT complexed to three cellular nucleotide analogs (hypoxanthine, IMP, and GMP) that we compare with the phosphate-bound enzyme. We established that binding to hAPRT is substrate shape-specific in the forward reaction, whereas it is base-specific in the reverse reaction. Furthermore, a quantum mechanics/molecular mechanics (QM/MM) analysis suggests that the forward reaction is mainly a nucleophilic substitution of type 2 (SN2) with a mix of SN1-type molecular mechanism. Based on our structural analysis, a magnesium-assisted SN2-type mechanism would be involved in the reverse reaction. These results provide a framework for understanding the molecular mechanism and substrate discrimination in both directions by APRTs. This knowledge can play an instrumental role in the design of inhibitors, such as antiparasitic agents, or adenine-based substrates.


Asunto(s)
Adenina Fosforribosiltransferasa/metabolismo , Adenina/química , Adenina/metabolismo , Adenina Fosforribosiltransferasa/química , Biocatálisis , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares , Estructura Terciaria de Proteína , Teoría Cuántica , Especificidad por Sustrato
6.
Curr Genet ; 66(6): 1163-1177, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32780163

RESUMEN

Because metabolism is a complex balanced process involving multiple enzymes, understanding how organisms compensate for transient or permanent metabolic imbalance is a challenging task that can be more easily achieved in simpler unicellular organisms. The metabolic balance results not only from the combination of individual enzymatic properties, regulation of enzyme abundance, but also from the architecture of the metabolic network offering multiple interconversion alternatives. Although metabolic networks are generally highly resilient to perturbations, metabolic imbalance resulting from enzymatic defect and specific environmental conditions can be designed experimentally and studied. Starting with a double amd1 aah1 mutant that severely and conditionally affects yeast growth, we carefully characterized the metabolic shuffle associated with this defect. We established that the GTP decrease resulting in an adenylic/guanylic nucleotide imbalance was responsible for the growth defect. Identification of several gene dosage suppressors revealed that TAT1, encoding an amino acid transporter, is a robust suppressor of the amd1 aah1 growth defect. We show that TAT1 suppression occurs through replenishment of the GTP pool in a process requiring the histidine biosynthesis pathway. Importantly, we establish that a tat1 mutant exhibits synthetic sickness when combined with an amd1 mutant and that both components of this synthetic phenotype can be suppressed by specific gene dosage suppressors. Together our data point to a strong phenotypic connection between amino acid uptake and GTP synthesis, a connection that could open perspectives for future treatment of related human defects, previously reported as etiologically highly conserved.


Asunto(s)
AMP Desaminasa/genética , Sistemas de Transporte de Aminoácidos/genética , Aminohidrolasas/genética , Nucleósidos de Purina/genética , Proteínas de Saccharomyces cerevisiae/genética , Guanosina Trifosfato/genética , Humanos , Nucleótidos/genética , Fenotipo , Saccharomyces cerevisiae/genética
7.
Curr Genet ; 64(6): 1275-1286, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29721631

RESUMEN

AICAR is the precursor of ZMP, a metabolite with antiproliferative properties in yeast and human. We aim at understanding how AICAR (and its active form ZMP) affects essential cellular processes. In this work, we found that ZMP accumulation is synthetic lethal with a hypomorphic allele of the ubiquitin-activating enzyme Uba1. A search for gene-dosage suppressors revealed that ubiquitin overexpression was sufficient to restore growth of the uba1 mutant upon AICAR treatment, suggesting that the ubiquitin pool is critical for cells to cope with AICAR. Accordingly, two mutants with constitutive low ubiquitin, ubp6 and doa1, were highly sensitive to AICAR, a phenotype that could be suppressed by ubiquitin overexpression. We established, by genetic means, that these new AICAR-sensitive mutants act in a different pathway from the rad6/bre1 mutants which were previously reported as sensitive to AICAR (Albrecht et al., Genetics 204:1447-1460, 2016). Two ubiquitin-conjugating enzymes (Ubc4 and Cdc34) and a ubiquitin ligase (Cdc4) were found to contribute to the ability of cells to cope with ZMP. This study illustrates the complexity of chemo-genetic interactions and shows how genetic analyses allow deciphering the implicated pathways, the individual gene effects, and their combined phenotypic contribution. Based on additivity and suppression patterns, we conclude that AICAR treatment shows synthetic interactions with distinct branches of the yeast ubiquitin pathway.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Ribonucleótidos/farmacología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ubiquitina , Ubiquitinación/efectos de los fármacos , Aminoimidazol Carboxamida/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación/genética
8.
New Phytol ; 214(3): 1158-1171, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28134432

RESUMEN

Two inorganic phosphate (Pi) uptake mechanisms operate in streptophytes and chlorophytes, the two lineages of green plants. PHOSPHATE TRANSPORTER B (PTB) proteins are hypothesized to be the Na+ /Pi symporters catalysing Pi uptake in chlorophytes, whereas PHOSPHATE TRANSPORTER 1 (PHT1) proteins are the H+ /Pi symporters that carry out Pi uptake in angiosperms. PHT1 proteins are present in all streptophyte lineages. However, Pi uptake in streptophyte algae and marine angiosperms requires Na+ influx, suggesting that Na+ /Pi symporters also function in some streptophytes. We tested the hypothesis that Na+ /Pi symporters exist in streptophytes. We identified PTB sequences in streptophyte genomes. Core PTB proteins are present at the plasma membrane of the liverwort Marchantia polymorpha. The expression of M. polymorpha core PTB proteins in the Saccharomyces cerevisiae pho2 mutant defective in high-affinity Pi transport rescues growth in low-Pi environments. Moreover, levels of core PTB mRNAs of M. polymorpha and the streptophyte alga Coleochaete nitellarum are higher in low-Pi than in Pi-replete conditions, consistent with a role in Pi uptake from the environment. We conclude that land plants inherited two Pi uptake mechanisms - mediated by the PTB and PHT1 proteins, respectively - from their streptophyte algal ancestor. Both systems operate in parallel in extant early diverging land plants.


Asunto(s)
Chlorophyta/metabolismo , Embryophyta/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Chlorophyta/efectos de los fármacos , Chlorophyta/genética , Secuencia Conservada , Embryophyta/efectos de los fármacos , Prueba de Complementación Genética , Interacciones Hidrofóbicas e Hidrofílicas , Marchantia/efectos de los fármacos , Marchantia/metabolismo , Mutación/genética , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Fosfatos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
9.
Genes Dev ; 23(12): 1399-407, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19528318

RESUMEN

Cells use strategic metabolites to sense the metabolome and accordingly modulate gene expression. Here, we show that the purine and phosphate pathways are positively regulated by the metabolic intermediate AICAR (5'-phosphoribosyl-5-amino-4-imidazole carboxamide). The transcription factor Pho2p is required for up-regulation of all AICAR-responsive genes. Accordingly, the binding of Pho2p to purine and phosphate pathway gene promoters is enhanced upon AICAR accumulation. In vitro, AICAR binds both Pho2p and Pho4p transcription factors and stimulates the interaction between Pho2p and either Bas1p or Pho4p in vivo. In contrast, SAICAR (succinyl-AICAR) only affects Pho2p-Bas1p interaction and specifically up-regulates purine regulon genes. Together, our data show that Bas1p and Pho4p compete for Pho2p binding, hence leading to the concerted regulation of cellular nucleotide synthesis and phosphate consumption.


Asunto(s)
Regulación de la Expresión Génica , Fosfatos/metabolismo , Purinas/biosíntesis , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Homeostasis , Regiones Promotoras Genéticas/genética , Unión Proteica , Transporte de Proteínas , Regulón/genética , Ribonucleótidos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Regulación hacia Arriba
10.
J Biol Chem ; 290(39): 23947-59, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26283791

RESUMEN

5-Aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside monophosphate (AICAR) is a natural metabolite with potent anti-proliferative and low energy mimetic properties. At high concentration, AICAR is toxic for yeast and mammalian cells, but the molecular basis of this toxicity is poorly understood. Here, we report the identification of yeast purine salvage pathway mutants that are synthetically lethal with AICAR accumulation. Genetic suppression revealed that this synthetic lethality is in part due to low expression of adenine phosphoribosyl transferase under high AICAR conditions. In addition, metabolite profiling points to the AICAR/NTP balance as crucial for optimal utilization of glucose as a carbon source. Indeed, we found that AICAR toxicity in yeast and human cells is alleviated when glucose is replaced by an alternative carbon source. Together, our metabolic analyses unveil the AICAR/NTP balance as a major factor of AICAR antiproliferative effects.


Asunto(s)
Adenina Fosforribosiltransferasa/antagonistas & inhibidores , Aminoimidazol Carboxamida/análogos & derivados , Proliferación Celular/efectos de los fármacos , Nucleótidos/metabolismo , Ribonucleótidos/farmacología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/metabolismo , Adenina Fosforribosiltransferasa/genética , Adenina Fosforribosiltransferasa/metabolismo , Aminoimidazol Carboxamida/farmacología , Línea Celular , Proliferación Celular/genética , Humanos , Nucleótidos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
New Phytol ; 209(1): 161-76, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26243630

RESUMEN

Plants display numerous strategies to cope with phosphate (Pi)-deficiency. Despite multiple genetic studies, the molecular mechanisms of low-Pi-signalling remain unknown. To validate the interest of chemical genetics to investigate this pathway we discovered and analysed the effects of PHOSTIN (PSN), a drug mimicking Pi-starvation in Arabidopsis. We assessed the effects of PSN and structural analogues on the induction of Pi-deficiency responses in mutants and wild-type and followed their accumulation in plants organs by high pressure liquid chromotography (HPLC) or mass-spectrophotometry. We show that PSN is cleaved in the growth medium, releasing its active motif (PSN11), which accumulates in plants roots. Despite the overaccumulation of Pi in the roots of treated plants, PSN11 elicits both local and systemic Pi-starvation effects. Nevertheless, albeit that the transcriptional activation of low-Pi genes by PSN11 is lost in the phr1;phl1 double mutant, neither PHO1 nor PHO2 are required for PSN11 effects. The range of local and systemic responses to Pi-starvation elicited, and their dependence on the PHR1/PHL1 function suggests that PSN11 affects an important and early step of Pi-starvation signalling. Its independence from PHO1 and PHO2 suggest the existence of unknown pathway(s), showing the usefulness of PSN and chemical genetics to bring new elements to this field.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Isoxazoles/aislamiento & purificación , Fosfatos/deficiencia , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Homeostasis , Isoxazoles/síntesis química , Fosfatos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Transducción de Señal , Bibliotecas de Moléculas Pequeñas , Factores de Transcripción , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
12.
J Biol Chem ; 289(24): 16844-54, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24778186

RESUMEN

5-Aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAr) is the precursor of the active monophosphate form (AICAR), a small molecule with potent anti-proliferative and low energy mimetic properties. The molecular bases for AICAR toxicity at the cellular level are poorly understood. Here, we report the isolation and characterization of several yeast AICAr-hypersensitive mutants. Identification of the cognate genes allowed us to establish that thiamine transporters Thi7 and Thi72 can efficiently take up AICAr under conditions where they are overexpressed. We establish that, under standard growth conditions, Nrt1, the nicotinamide riboside carrier, is the major AICAr transporter in yeast. A study of AICAR accumulation in human cells revealed substantial disparities among cell lines and confirmed that AICAr enters cells via purine nucleoside transporters. Together, our results point to significant differences between yeast and human cells for both AICAr uptake and AICAR accumulation.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Proteínas de Transporte de Membrana/metabolismo , Ribonucleótidos/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Humanos , Proteínas de Transporte de Membrana/genética , Ratones , Mutación , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tiamina/metabolismo
13.
J Cell Sci ; 126(Pt 2): 415-26, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23230142

RESUMEN

Mitochondria are essential organelles producing most of the energy required for the cell. A selective autophagic process called mitophagy removes damaged mitochondria, which is critical for proper cellular homeostasis; dysfunctional mitochondria can generate excess reactive oxygen species that can further damage the organelle as well as other cellular components. Although proper cell physiology requires the maintenance of a healthy pool of mitochondria, little is known about the mechanism underlying the recognition and selection of damaged organelles. In this study, we investigated the cellular fate of mitochondria damaged by the action of respiratory inhibitors (antimycin A, myxothiazol, KCN) that act on mitochondrial respiratory complexes III and IV, but have different effects with regard to the production of reactive oxygen species and increased levels of reduced cytochromes. Antimycin A and potassium cyanide effectively induced nonspecific autophagy, but not mitophagy, in a wild-type strain of Saccharomyces cerevisiae; however, low or no autophagic activity was measured in strains deficient for genes that encode proteins involved in mitophagy, including ATG32, ATG11 and BCK1. These results provide evidence for a major role of specific mitophagy factors in the control of a general autophagic cellular response induced by mitochondrial alteration. Moreover, increased levels of reduced cytochrome b, one of the components of the respiratory chain, could be the first signal of this induction pathway.


Asunto(s)
Autofagia/fisiología , Citocromos b/metabolismo , Mitocondrias/fisiología , Mitofagia/fisiología , Antimicina A/farmacología , Autofagia/efectos de los fármacos , Metacrilatos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Tiazoles/farmacología
14.
Curr Genet ; 61(4): 633-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25893566

RESUMEN

Previous genetic analyses showed phenotypic interactions between 5-amino-4-imidazole carboxamide ribonucleotide 5'-phosphate (AICAR) produced from the purine and histidine pathways and methionine biosynthesis. Here, we revisited the effect of AICAR on methionine requirement due to AICAR accumulation in the presence of the fau1 mutation invalidating folinic acid remobilization. We found that this methionine auxotrophy could be suppressed by overexpression of the methionine synthase Met6 or by deletion of the serine hydroxymethyltransferase gene SHM2. We propose that in a fau1 background, AICAR, by stimulating the transcriptional expression of SHM2, leads to a folinic acid accumulation inhibiting methionine synthesis by Met6. In addition, we uncovered a new methionine auxotrophy for the ade3 bas1 double mutant that can be rescued by overexpressing the SHM2 gene. We propose that methionine auxotrophy in this mutant is the result of a competition for 5,10-methylenetetrahydrofolate between methionine and deoxythymidine monophosphate synthesis. Altogether, our data show intricate genetic interactions between one-carbon units, purine and methionine metabolism through fine-tuning of serine hydroxymethyltransferase by AICAR and the transcription factor Bas1.


Asunto(s)
Ácido Fólico/metabolismo , Regulación Fúngica de la Expresión Génica , Glicina Hidroximetiltransferasa/metabolismo , Metionina/metabolismo , Purinas/metabolismo , Saccharomyces cerevisiae/genética , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Glicina Hidroximetiltransferasa/genética , Histidina/metabolismo , Leucovorina/metabolismo , Mutación , Ribonucleótidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetrahidrofolatos/metabolismo , Timidina/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Activación Transcripcional
15.
Purinergic Signal ; 11(1): 59-77, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25319637

RESUMEN

Adenosine is an endogenous molecule that regulates many physiological processes via the activation of four specific G-protein-coupled ADORA receptors. Extracellular adenosine may originate either from the hydrolysis of released ATP by the ectonucleotidases or from cellular exit via the equilibrative nucleoside transporters (SLC29A). Adenosine extracellular concentration is also regulated by its successive hydrolysis into uric acid by membrane-bound enzymes or by cell influx via the concentrative nucleoside transporters (SLC28A). All of these members constitute the adenosine signaling pathway and regulate adenosine functions. Although the roles of this pathway are quite well understood in adults, little is known regarding its functions during vertebrate embryogenesis. We have used Xenopus laevis as a model system to provide a comparative expression map of the different members of this pathway during vertebrate development. We report the characterization of the different enzymes, receptors, and nucleoside transporters in both X. laevis and X. tropicalis, and we demonstrate by phylogenetic analyses the high level of conservation of these members between amphibians and mammals. A thorough expression analysis of these members during development and in the adult frog reveals that each member displays distinct specific expression patterns. These data suggest potentially different developmental roles for these proteins and therefore for extracellular adenosine. In addition, we show that adenosine levels during amphibian embryogenesis are very low, confirming that they must be tightly controlled for normal development.


Asunto(s)
Adenosina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/genética , Xenopus laevis/genética , Animales , Embrión no Mamífero/metabolismo , Genómica , Xenopus laevis/metabolismo
16.
Mol Syst Biol ; 9: 707, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24217298

RESUMEN

Cell size is a complex quantitative trait resulting from interactions between intricate genetic networks and environmental conditions. Here, taking advantage of previous studies that uncovered hundreds of genes affecting budding yeast cell size homeostasis, we performed a wide pharmaco-epistasis analysis using drugs mimicking cell size mutations. Simple epistasis relationship emerging from this approach allowed us to characterize a new cell size homeostasis pathway comprising the sirtuin Sir2, downstream effectors including the large ribosomal subunit (60S) and the transcriptional regulators Swi4 and Swi6. We showed that this Sir2/60S signaling route acts independently of other previously described cell size controlling pathways and may integrate the metabolic status of the cell through NAD(+) intracellular concentration. Finally, although Sir2 and the 60S subunits regulate both cell size and replicative aging, we found that there is no clear causal relationship between these two complex traits. This study sheds light on a pathway of >50 genes and illustrates how pharmaco-epistasis applied to yeast offers a potent experimental framework to explore complex genotype/phenotype relationships.


Asunto(s)
Proteínas de Unión al ADN/genética , Epistasis Genética , Regulación Fúngica de la Expresión Génica , Subunidades Ribosómicas Grandes de Eucariotas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Genotipo , Homeostasis , Modelos Genéticos , Mutación , NAD/metabolismo , Fenotipo , Sitios de Carácter Cuantitativo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Factores de Transcripción/metabolismo
17.
Nucleic Acids Res ; 40(12): 5271-82, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22379133

RESUMEN

Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.


Asunto(s)
Adenina/metabolismo , Regulación Fúngica de la Expresión Génica , ARN sin Sentido/biosíntesis , Retroelementos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transactivadores/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Eliminación de Gen , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Transactivadores/genética , Activación Transcripcional , Transcriptoma
18.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38758215

RESUMEN

Microtubules are dynamic polymers that interconvert between phases of growth and shrinkage, yet they provide structural stability to cells. Growth involves hydrolysis of GTP-tubulin to GDP-tubulin, which releases energy that is stored within the microtubule lattice and destabilizes it; a GTP cap at microtubule ends is thought to prevent GDP subunits from rapidly dissociating and causing catastrophe. Here, using in vitro reconstitution assays, we show that GDP-tubulin, usually considered inactive, can itself assemble into microtubules, preferentially at the minus end, and promote persistent growth. GDP-tubulin-assembled microtubules are highly stable, displaying no detectable spontaneous shrinkage. Strikingly, islands of GDP-tubulin within dynamic microtubules stop shrinkage events and promote rescues. Microtubules thus possess an intrinsic capacity for stability, independent of accessory proteins. This finding provides novel mechanisms to explain microtubule dynamics.


Asunto(s)
Guanosina Difosfato , Microtúbulos , Tubulina (Proteína) , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Guanosina Difosfato/metabolismo , Animales , Guanosina Trifosfato/metabolismo , Humanos
19.
J Biol Chem ; 287(18): 14569-78, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22396541

RESUMEN

Cell fate and proliferation are tightly linked to the regulation of the mitochondrial energy metabolism. Hence, mitochondrial biogenesis regulation, a complex process that requires a tight coordination in the expression of the nuclear and mitochondrial genomes, has a major impact on cell fate and is of high importance. Here, we studied the molecular mechanisms involved in the regulation of mitochondrial biogenesis through a nutrient-sensing pathway, the Ras-cAMP pathway. Activation of this pathway induces a decrease in the cellular phosphate potential that alleviates the redox pressure on the mitochondrial respiratory chain. One of the cellular consequences of this modulation of cellular phosphate potential is an increase in the cellular glutathione redox state. The redox state of the glutathione disulfide-glutathione couple is a well known important indicator of the cellular redox environment, which is itself tightly linked to mitochondrial activity, mitochondria being the main cellular producer of reactive oxygen species. The master regulator of mitochondrial biogenesis in yeast (i.e. the transcriptional co-activator Hap4p) is positively regulated by the cellular glutathione redox state. Using a strain that is unable to modulate its glutathione redox state (Δglr1), we pinpoint a positive feedback loop between this redox state and the control of mitochondrial biogenesis. This is the first time that control of mitochondrial biogenesis through glutathione redox state has been shown.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , AMP Cíclico/metabolismo , Glutatión/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor de Unión a CCAAT/genética , AMP Cíclico/genética , Glutatión/genética , Mitocondrias/genética , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
J Cell Sci ; 124(Pt 7): 1126-35, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21385840

RESUMEN

Dynamin-related GTPase proteins (DRPs) are main players in membrane remodelling. Conserved DRPs called mitofusins (Mfn1/Mfn2/Fzo1) mediate the fusion of mitochondrial outer membranes (OM). OM fusion depends on self-assembly and GTPase activity of mitofusins as well as on two other proteins, Ugo1 and Mdm30. Here, we define distinct steps of the OM fusion cycle using in vitro and in vivo approaches. We demonstrate that yeast Fzo1 assembles into homo-dimers, depending on Ugo1 and on GTP binding to Fzo1. Fzo1 homo-dimers further associate upon formation of mitochondrial contacts, allowing membrane tethering. Subsequent GTP hydrolysis is required for Fzo1 ubiquitylation by the F-box protein Mdm30. Finally, Mdm30-dependent degradation of Fzo1 completes Fzo1 function in OM fusion. Our results thus unravel functions of Ugo1 and Mdm30 at distinct steps during OM fusion and suggest that protein clearance confers a non-cycling mechanism to mitofusins, which is distinct from other cellular membrane fusion events.


Asunto(s)
Proteínas F-Box/metabolismo , GTP Fosfohidrolasas/metabolismo , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Dimerización , Proteínas F-Box/química , Proteínas F-Box/genética , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Guanosina Trifosfato/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Membranas Mitocondriales/química , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA