Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Glob Chang Biol ; 30(6): e17366, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847450

RESUMEN

Changes in body size have been documented across taxa in response to human activities and climate change. Body size influences many aspects of an individual's physiology, behavior, and ecology, ultimately affecting life history performance and resilience to stressors. In this study, we developed an analytical approach to model individual growth patterns using aerial imagery collected via drones, which can be used to investigate shifts in body size in a population and the associated drivers. We applied the method to a large morphological dataset of gray whales (Eschrichtius robustus) using a distinct foraging ground along the NE Pacific coast, and found that the asymptotic length of these whales has declined since around the year 2000 at an average rate of 0.05-0.12 m/y. The decline has been stronger in females, which are estimated to be now comparable in size to males, minimizing sexual dimorphism. We show that the decline in asymptotic length is correlated with two oceanographic metrics acting as proxies of habitat quality at different scales: the mean Pacific Decadal Oscillation index, and the mean ratio between upwelling intensity in a season and the number of relaxation events. These results suggest that the decline in gray whale body size may represent a plastic response to changing environmental conditions. Decreasing body size could have cascading effects on the population's demography, ability to adjust to environmental changes, and ecological influence on the structure of their community. This finding adds to the mounting evidence that body size is shrinking in several marine populations in association with climate change and other anthropogenic stressors. Our modeling approach is broadly applicable across multiple systems where morphological data on megafauna are collected using drones.


Asunto(s)
Tamaño Corporal , Cambio Climático , Ballenas , Animales , Femenino , Masculino , Ballenas/fisiología , Ecosistema , Modelos Biológicos , Océano Pacífico
2.
Proc Biol Sci ; 289(1970): 20212261, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35232237

RESUMEN

Given the patchiness and long-term predictability of marine resources, memory of high-quality foraging grounds is expected to provide fitness advantages for central place foragers. However, it remains challenging to characterize how marine predators integrate memory with recent prey encounters to adjust fine-scale movement and use of foraging patches. Here, we used two months of movement data from harbour seals (Phoca vitulina) to quantify the repeatability in foraging patches as a proxy for memory. We then integrated these data into analyses of fine-scale movement and underwater behaviour to test how both spatial memory and prey encounter rates influenced the seals' area-restricted search (ARS) behaviour. Specifically, we used one month's GPS data from 29 individuals to build spatial memory maps of searched areas and archived accelerometery data from a subset of five individuals to detect prey catch attempts, a proxy for prey encounters. Individuals were highly consistent in the areas they visited over two consecutive months. Hidden Markov models showed that both spatial memory and prey encounters increased the probability of seals initiating ARS. These results provide evidence that predators use memory to adjust their fine-scale movement, and this ability should be accounted for in movement models.


Asunto(s)
Phoca , Conducta Predatoria , Animales , Conducta Alimentaria , Movimiento , Memoria Espacial
3.
Proc Biol Sci ; 289(1987): 20222058, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36448280

RESUMEN

Assessing cumulative effects of human activities on ecosystems is required by many jurisdictions, but current science cannot meet regulatory demands. Regulations define them as effect(s) of one human action combined with other actions. Here we argue for an approach that evaluates the cumulative risk of multiple stressors for protected wildlife populations within their ecosystems. Monitoring effects of each stressor is necessary but not sufficient to estimate how multiple stressors interact to affect wildlife populations. Examining the mechanistic pathways, from cellular to ecological, by which stressors affect individuals can help prioritize stressors and interpret how they interact. Our approach uses health indicators to accumulate the effects of stressors on individuals and to estimate changes in vital rates, driving population status. We advocate using methods well-established in human health and integrating them into ecosystem-based management to protect the health of commercially and culturally important wildlife populations and to protect against risk of extinction for threatened species. Our approach will improve abilities to conserve and manage ecosystems but will also demand significant increases in research and monitoring effort. We advocate for increased investment proportional to the economic scale of human activities in the Anthropocene and their pervasive effects on ecology and biodiversity.


Asunto(s)
Animales Salvajes , Ecosistema , Humanos , Animales , Biodiversidad , Especies en Peligro de Extinción
4.
Ecol Appl ; 32(1): e02475, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34653299

RESUMEN

Assessing the patterns of wildlife attendance to specific areas is relevant across many fundamental and applied ecological studies, particularly when animals are at risk of being exposed to stressors within or outside the boundaries of those areas. Marine mammals are increasingly being exposed to human activities that may cause behavioral and physiological changes, including military exercises using active sonars. Assessment of the population-level consequences of anthropogenic disturbance requires robust and efficient tools to quantify the levels of aggregate exposure for individuals in a population over biologically relevant time frames. We propose a discrete-space, continuous-time approach to estimate individual transition rates across the boundaries of an area of interest, informed by telemetry data collected with uncertainty. The approach allows inferring the effect of stressors on transition rates, the progressive return to baseline movement patterns, and any difference among individuals. We apply the modeling framework to telemetry data from Blainville's beaked whale (Mesoplodon densirostris) tagged in the Bahamas at the Atlantic Undersea Test and Evaluation Center (AUTEC), an area used by the U.S. Navy for fleet readiness training. We show that transition rates changed as a result of exposure to sonar exercises in the area, reflecting an avoidance response. Our approach supports the assessment of the aggregate exposure of individuals to sonar and the resulting population-level consequences. The approach has potential applications across many applied and fundamental problems where telemetry data are used to characterize animal occurrence within specific areas.


Asunto(s)
Sonido , Ballenas , Animales , Ballenas/fisiología
5.
J Anim Ecol ; 91(10): 1948-1960, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35895847

RESUMEN

The assessment of behavioural disturbance in cetacean species (e.g. resulting from exposure to anthropogenic sources such as military sonar, seismic surveys, or pile driving) is important for effective conservation and management. Disturbance effects can be informed by Behavioural Response Studies (BRSs), involving either controlled exposure experiments (CEEs) where noise exposure conditions are presented deliberately to meet experimental objectives or in opportunistic contexts where ongoing activities are monitored in a strategic manner. In either context, animal-borne sensors or in situ observations can provide information on individual exposure and disturbance responses. The past 15 years of research have greatly expanded our understanding of behavioural responses to noise, including hundreds of experiments in nearly a dozen cetacean species. Many papers note limited sample sizes, required knowledge of baseline behaviour prior to exposure and the importance of contextual factors modulating behavioural responses, all of which in combination can lead to sampling biases, even for well-designed research programs. It is critical to understand these biases to robustly identify responses. This ensures outcomes of BRSs help inform predictions of how anthropogenic disturbance impacts individuals and populations. Our approach leverages concepts from the animal behaviour literature focused on helping to avoid sampling bias by considering what shapes an animal's response. These factors include social, experience, genetic and natural changes in responsiveness. We developed and applied a modified version of this framework to synthesise current knowledge on cetacean response in the context of effects observed across marine and terrestrial taxa. This new 'Sampling, Exposure, Receptor' framework (SERF) identifies 43 modulating factors, highlights potential biases, and assesses how these vary across selected focal species. In contrast to studies that identified variation in 'Exposure' factors as a key concern, our analysis indicated that factors relating to 'Sampling' (e.g. deploying tags on less evasive individuals, which biases selection of subjects), and 'Receptor' (e.g. health status or coping style) have the greatest potential for weakening the desired broad representativeness of BRSs. Our assessment also highlights how potential biases could be addressed with existing datasets or future developments.


Asunto(s)
Conducta Animal , Ruido , Animales , Conducta Animal/fisiología
6.
Proc Biol Sci ; 288(1957): 20210325, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34428966

RESUMEN

Assessing the non-lethal effects of disturbance from human activities is necessary for wildlife conservation and management. However, linking short-term responses to long-term impacts on individuals and populations is a significant hurdle for evaluating the risks of a proposed activity. The Population Consequences of Disturbance (PCoD) framework conceptually describes how disturbance can lead to changes in population dynamics, and its real-world application has led to a suite of quantitative models that can inform risk assessments. Here, we review PCoD models that forecast the possible consequences of a range of disturbance scenarios for marine mammals. In so doing, we identify common themes and highlight general principles to consider when assessing risk. We find that, when considered holistically, these models provide valuable insights into which contextual factors influence a population's degree of exposure and sensitivity to disturbance. We also discuss model assumptions and limitations, identify data gaps and suggest future research directions to enable PCoD models to better inform risk assessments and conservation and management decisions. The general principles explored can help wildlife managers and practitioners identify and prioritize the populations most vulnerable to disturbance and guide industry in planning activities that avoid or mitigate population-level effects.


Asunto(s)
Animales Salvajes , Actividades Humanas , Animales , Humanos , Dinámica Poblacional
7.
Am Nat ; 196(4): E71-E87, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32970466

RESUMEN

AbstractAnimals initiate, interrupt, or invest resources in reproduction in light of their physiology and the environment. The energetic risks entailed in an individual's reproductive strategy can influence the ability to cope with additional stressors, such as anthropogenic climate change and disturbance. To explore the trade-offs between internal state, external resource availability, and reproduction, we applied state-dependent life-history theory (SDLHT) to a dynamic energy budget (DEB) model for long-finned pilot whales (Globicephala melas). We investigated the reproductive strategies emerging from the interplay between fitness maximization and propensity to take energetic risks, as well as the resulting susceptibility of individual vital rates to disturbance. Without disturbance, facultative reproductive behavior from SDLHT and fixed rules in the DEB model led to comparable individual fitness. However, under disturbance, the reproductive strategies emerging from SDLHT increased vulnerability to energetic risks, resulting in lower fitness than fixed rules. These fragile strategies might therefore be unlikely to evolve in the first place. Heterogeneous resource availability favored more cautious (and thus more robust) strategies, particularly when knowledge of resource variation was accurate. Our results demonstrate that the assumptions regarding the dynamic trade-offs underlying an individual's decision-making can have important consequences for predicting the effects of anthropogenic stressors on wildlife populations.


Asunto(s)
Rasgos de la Historia de Vida , Reproducción/fisiología , Calderón/fisiología , Animales , Metabolismo Energético , Femenino , Actividades Humanas
8.
Am Nat ; 191(2): E40-E56, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29351020

RESUMEN

Integrating behavior and physiology is critical to formulating new hypotheses on the evolution of animal life-history strategies. Migratory capital breeders acquire most of the energy they need to sustain migration, gestation, and lactation before parturition. Therefore, when predicting the impact of environmental variation on such species, a mechanistic understanding of the physiology of their migratory behavior is required. Using baleen whales as a model system, we developed a dynamic state variable model that captures the interplay among behavioral decisions, energy, reproductive needs, and the environment. We applied the framework to blue whales (Balaenoptera musculus) in the eastern North Pacific Ocean and explored the effects of environmental and anthropogenic perturbations on female reproductive success. We demonstrate the emergence of migration to track prey resources, enabling us to quantify the trade-offs among capital breeding, body condition, and metabolic expenses. We predict that periodic climatic oscillations affect reproductive success less than unprecedented environmental changes do. The effect of localized, acute anthropogenic impacts depended on whales' behavioral response to the disturbance; chronic, but weaker, disturbances had little effect on reproductive success. Because we link behavior and vital rates by modeling individuals' energetic budgets, we provide a general framework to investigate the ecology of migration and assess the population consequences of disturbance, while identifying critical knowledge gaps.


Asunto(s)
Migración Animal/fisiología , Balaenoptera/fisiología , Conducta Alimentaria , Modelos Biológicos , Animales , Balaenoptera/psicología , Euphausiacea , Femenino , Embarazo
9.
J Anim Ecol ; 87(4): 1116-1125, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29577275

RESUMEN

Human activities can influence the movement of organisms, either repelling or attracting individuals depending on whether they interfere with natural behavioural patterns or enhance access to food. To discern the processes affecting such interactions, an appropriate analytical approach must reflect the motivations driving behavioural decisions at multiple scales. In this study, we developed a modelling framework for the analysis of foraging trips by central place foragers. By recognising the distinction between movement phases at a larger scale and movement steps at a finer scale, our model can identify periods when animals are actively following moving attractors in their landscape. We applied the framework to GPS tracking data of northern fulmars Fulmarus glacialis, paired with contemporaneous fishing boat locations, to quantify the putative scavenging activity of these seabirds on discarded fish and offal. We estimated the rate and scale of interaction between individual birds and fishing boats and the interplay with other aspects of a foraging trip. The model classified periods when birds were heading out to sea, returning towards the colony or following the closest boat. The probability of switching towards a boat declined with distance and varied depending on the phase of the trip. The maximum distance at which a bird switched towards the closest boat was estimated around 35 km, suggesting the use of olfactory information to locate food. Individuals spent a quarter of a foraging trip, on average, following fishing boats, with marked heterogeneity among trips and individuals. Our approach can be used to characterise interactions between central place foragers and different anthropogenic or natural stimuli. The model identifies the processes influencing central place foraging at multiple scales, which can improve our understanding of the mechanisms underlying movement behaviour and characterise individual variation in interactions with a range of human activities that may attract or repel these species. Therefore, it can be adapted to explore the movement of other species that are subject to multiple dynamic drivers.


Asunto(s)
Aves/fisiología , Conducta Alimentaria , Movimiento , Percepción Olfatoria , Animales , Ecosistema , Modelos Biológicos
10.
Adv Exp Med Biol ; 875: 705-12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26611022

RESUMEN

We review recent work that developed new techniques for underwater noise assessment that integrate acoustic monitoring with automatic identification system (AIS) shipping data and time-lapse video, meteorological, and tidal data. Two sites were studied within the Moray Firth Special Area of Conservation (SAC) for bottlenose dolphins, where increased shipping traffic is expected from construction of offshore wind farms outside the SAC. Noise exposure varied markedly between the sites, and natural and anthropogenic contributions were characterized using multiple data sources. At one site, AIS-operating vessels accounted for total cumulative sound exposure (0.1-10 kHz), suggesting that noise modeling using the AIS would be feasible.


Asunto(s)
Acústica , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Ruido , Navíos , Imagen de Lapso de Tiempo/métodos , Automatización , Geografía , Escocia
11.
Proc Biol Sci ; 282(1818): 20152109, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26511044

RESUMEN

Human activities that impact wildlife do not necessarily remove individuals from populations. They may also change individual behaviour in ways that have sublethal effects. This has driven interest in developing analytical tools that predict the population consequences of short-term behavioural responses. In this study, we incorporate empirical information on the ecology of a population of bottlenose dolphins into an individual-based model that predicts how individuals' behavioural dynamics arise from their underlying motivational states, as well as their interaction with boat traffic and dredging activities. We simulate the potential effects of proposed coastal developments on this population and predict that the operational phase may affect animals' motivational states. For such results to be relevant for management, the effects on individuals' vital rates also need to be quantified. We investigate whether the relationship between an individual's exposure and the survival of its calves can be directly estimated using a Bayesian multi-stage model for calf survival. The results suggest that any effect on calf survival is probably small and that a significant relationship could only be detected in large, closely studied populations. Our work can be used to guide management decisions, accelerate the consenting process for coastal and offshore developments and design targeted monitoring.


Asunto(s)
Conducta Animal/fisiología , Delfín Mular/fisiología , Conservación de los Recursos Naturales , Actividades Humanas , Animales , Teorema de Bayes , Simulación por Computador , Femenino , Motivación , Dinámica Poblacional , Navíos , Análisis de Supervivencia
12.
Ecol Appl ; 25(3): 729-41, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26214918

RESUMEN

The nonlethal effects of wildlife tourism can threaten the conservation status of targeted animal populations. In turn, such resource depletion can compromise the economic viability of the industry. Therefore, wildlife tourism exploits resources that can become common pool and that should be managed accordingly. We used a simulation approach to test whether different management regimes (tax, tax and subsidy, cap, cap and trade) could provide socioecologically sustainable solutions. Such schemes are sensitive to errors in estimated management targets. We determined the sensitivity of each scenario to various realistic uncertainties in management implementation and in our knowledge of the population. Scenarios where time quotas were enforced using a tax and subsidy approach, or they were traded between operators were more likely to be sustainable. Importantly, sustainability could be achieved even when operators were assumed to make simple rational economic decisions. We suggest that a combination of the two regimes might offer a robust solution, especially on a small spatial scale and under the control of a self-organized, operator-level institution. Our simulation platform could be parameterized to mimic local conditions and provide a test bed for experimenting different governance solutions in specific case studies.


Asunto(s)
Animales Salvajes , Modelos Económicos , Viaje/economía , Distribución Animal , Animales , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Humanos , Factores de Tiempo
13.
Biol Lett ; 10(5): 20131090, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24850891

RESUMEN

Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exposed to impulse noise from a 10 day two-dimensional seismic survey. Here, we used an array of passive acoustic loggers coupled with calibrated noise measurements to test whether the seismic survey influenced the activity patterns of porpoises remaining in the area. We showed that the probability of recording a buzz declined by 15% in the ensonified area and was positively related to distance from the source vessel. We also estimated received levels at the hydrophones and characterized the noise response curve. Our results demonstrate how environmental impact assessments can be developed to assess more subtle effects of noise disturbance on activity patterns and foraging efficiency.


Asunto(s)
Conducta Animal/efectos de la radiación , Ruido/efectos adversos , Phocoena , Animales , Ecolocación
14.
R Soc Open Sci ; 11(2): 240050, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38420631

RESUMEN

Body size is key to many life-history processes, including reproduction. Across species, climate change and other stressors have caused reductions in the body size to which animals can grow, called asymptotic size, with consequences for demography. A reduction in mean asymptotic length was documented for critically endangered North Atlantic right whales, in parallel with declines in health and vital rates resulting from human activities and environmental changes. Here, we tested whether smaller body size was associated with lower reproductive output, using a state-space model for individual health, survival and reproduction that quantifies the mechanistic links between these processes. Body size (as represented by the cube of length) was strongly associated with a female's calving probability at each reproductive opportunity. This relationship explained 62% of the variation in calving among reproductive females, along with their decreasing health (20%). The effects of decreasing mean body size on reproductive performance are another concerning indication of the worsening prospects for this species and many others affected by environmental change, requiring a focus of conservation and management interventions on improving conditions that affect reproduction as well as reducing mortality.

15.
J Acoust Soc Am ; 133(4): EL262-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23556689

RESUMEN

This paper presents the empirical probability density of the power spectral density as a tool to assess the field performance of passive acoustic monitoring systems and the statistical distribution of underwater noise levels across the frequency spectrum. Using example datasets, it is shown that this method can reveal limitations such as persistent tonal components and insufficient dynamic range, which may be undetected by conventional techniques. The method is then combined with spectral averages and percentiles, which illustrates how the underlying noise level distributions influence these metrics. This combined approach is proposed as a standard, integrative presentation of ambient noise spectra.


Asunto(s)
Monitoreo del Ambiente/métodos , Modelos Teóricos , Ruido , Procesamiento de Señales Asistido por Computador , Ultrasonido , Monitoreo del Ambiente/instrumentación , Análisis de Fourier , Movimiento (Física) , Océanos y Mares , Presión , Probabilidad , Espectrografía del Sonido , Factores de Tiempo , Transductores de Presión , Ultrasonido/instrumentación , Agua
16.
Conserv Physiol ; 11(1): coad035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492466

RESUMEN

Growth of structural mass and energy reserves influences individual survival, reproductive success, population and species life history. Metrics of structural growth and energy storage of individuals are often used to assess population health and reproductive potential, which can inform conservation. However, the energetic costs of tissue deposition for structural growth and energy stores and their prioritization within bioenergetic budgets are poorly documented. This is particularly true across marine mammal species as resources are accumulated at sea, limiting the ability to measure energy allocation and prioritization. We reviewed the literature on marine mammal growth to summarize growth patterns, explore their tissue compositions, assess the energetic costs of depositing these tissues and explore the tradeoffs associated with growth. Generally, marine mammals exhibit logarithmic growth. This means that the energetic costs related to growth and tissue deposition are high for early postnatal animals, but small compared to the total energy budget as animals get older. Growth patterns can also change in response to resource availability, habitat and other energy demands, such that they can serve as an indicator of individual and population health. Composition of tissues remained consistent with respect to protein and water content across species; however, there was a high degree of variability in the lipid content of both muscle (0.1-74.3%) and blubber (0.4-97.9%) due to the use of lipids as energy storage. We found that relatively few well-studied species dominate the literature, leaving data gaps for entire taxa, such as beaked whales. The purpose of this review was to identify such gaps, to inform future research priorities and to improve our understanding of how marine mammals grow and the associated energetic costs.

17.
Conserv Physiol ; 11(1): coac083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756464

RESUMEN

Bioenergetics is the study of how animals achieve energetic balance. Energetic balance results from the energetic expenditure of an individual and the energy they extract from their environment. Ingested energy depends on several extrinsic (e.g prey species, nutritional value and composition, prey density and availability) and intrinsic factors (e.g. foraging effort, success at catching prey, digestive processes and associated energy losses, and digestive capacity). While the focus in bioenergetic modelling is often on the energetic costs an animal incurs, the robust estimation of an individual's energy intake is equally critical for producing meaningful predictions. Here, we review the components and processes that affect energy intake from ingested gross energy to biologically useful net energy (NE). The current state of knowledge of each parameter is reviewed, shedding light on research gaps to advance this field. The review highlighted that the foraging behaviour of many marine mammals is relatively well studied via biologging tags, with estimates of success rate typically assumed for most species. However, actual prey capture success rates are often only assumed, although we note studies that provide approaches for its estimation using current techniques. A comprehensive collation of the nutritional content of marine mammal prey species revealed a robust foundation from which prey quality (comprising prey species, size and energy density) can be assessed, though data remain unavailable for many prey species. Empirical information on various energy losses following ingestion of prey was unbalanced among marine mammal species, with considerably more literature available for pinnipeds. An increased understanding and accurate estimate of each of the components that comprise a species NE intake are an integral part of bioenergetics. Such models provide a key tool to investigate the effects of disturbance on marine mammals at an individual and population level and to support effective conservation and management.

18.
Conserv Physiol ; 11(1): coad082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026800

RESUMEN

Understanding how individual animals respond to stressors behaviourally and physiologically is a critical step towards quantifying long-term population consequences and informing management efforts. Glucocorticoid (GC) metabolite accumulation in various matrices provides an integrated measure of adrenal activation in baleen whales and could thus be used to investigate physiological changes following exposure to stressors. In this study, we measured GC concentrations in faecal samples of Pacific Coast Feeding Group (PCFG) gray whales (Eschrichtius robustus) collected over seven consecutive years to assess the association between GC content and metrics of exposure to sound levels and vessel traffic at different temporal scales, while controlling for contextual variables such as sex, reproductive status, age, body condition, year, time of year and location. We develop a Bayesian Generalized Additive Modelling approach that accommodates the many complexities of these data, including non-linear variation in hormone concentrations, missing covariate values, repeated samples, sampling variability and some hormone concentrations below the limit of detection. Estimated relationships showed large variability, but emerging patterns indicate a strong context-dependency of physiological variation, depending on sex, body condition and proximity to a port. Our results highlight the need to control for baseline hormone variation related to context, which otherwise can obscure the functional relationship between faecal GCs and stressor exposure. Therefore, extensive data collection to determine sources of baseline variation in well-studied populations, such as PCFG gray whales, could shed light on cetacean stress physiology and be used to extend applicability to less-well-studied taxa. GC analyses may offer greatest utility when employed as part of a suite of markers that, in aggregate, provide a multivariate measure of physiological status, better informing estimates of individuals' health and ultimately the consequences of anthropogenic stressors on populations.

19.
PLoS One ; 18(8): e0290819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37651444

RESUMEN

Anthropogenic activities can lead to changes in animal behavior. Predicting population consequences of these behavioral changes requires integrating short-term individual responses into models that forecast population dynamics across multiple generations. This is especially challenging for long-lived animals, because of the different time scales involved. Beaked whales are a group of deep-diving odontocete whales that respond behaviorally when exposed to military mid-frequency active sonar (MFAS), but the effect of these nonlethal responses on beaked whale populations is unknown. Population consequences of aggregate exposure to MFAS was assessed for two beaked whale populations that are regularly present on U.S. Navy training ranges where MFAS is frequently used. Our approach integrates a wide range of data sources, including telemetry data, information on spatial variation in habitat quality, passive acoustic data on the temporal pattern of sonar use and its relationship to beaked whale foraging activity, into an individual-based model with a dynamic bioenergetic module that governs individual life history. The predicted effect of disturbance from MFAS on population abundance ranged between population extinction to a slight increase in population abundance. These effects were driven by the interaction between the temporal pattern of MFAS use, baseline movement patterns, the spatial distribution of prey, the nature of beaked whale behavioral response to MFAS and the top-down impact of whale foraging on prey abundance. Based on these findings, we provide recommendations for monitoring of marine mammal populations and highlight key uncertainties to help guide future directions for assessing population impacts of nonlethal disturbance for these and other long-lived animals.


Asunto(s)
Caniformia , Ballenas , Animales , Sonido , Acústica , Efectos Antropogénicos , Conducta Animal
20.
Conserv Physiol ; 10(1): coac036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754757

RESUMEN

Bioenergetic models describe the processes through which animals acquire energy from resources in the environment and allocate it to different life history functions. They capture some of the fundamental mechanisms regulating individuals, populations and ecosystems and have thus been used in a wide variety of theoretical and applied contexts. Here, I review the development of bioenergetic models for marine mammals and their application to management and conservation. For these long-lived, wide-ranging species, bioenergetic approaches were initially used to assess the energy requirements and prey consumption of individuals and populations. Increasingly, models are developed to describe the dynamics of energy intake and allocation and predict how resulting body reserves, vital rates and population dynamics might change as external conditions vary. The building blocks required to develop such models include estimates of intake rate, maintenance costs, growth patterns, energy storage and the dynamics of gestation and lactation, as well as rules for prioritizing allocation. I describe how these components have been parameterized for marine mammals and highlight critical research gaps. Large variation exists among available analytical approaches, reflecting the large range of life histories, management needs and data availability across studies. Flexibility in modelling strategy has supported tailored applications to specific case studies but has resulted in limited generality. Despite the many empirical and theoretical uncertainties that remain, bioenergetic models can be used to predict individual and population responses to environmental change and other anthropogenic impacts, thus providing powerful tools to inform effective management and conservation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA