Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 500(7463): 453-7, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23873043

RESUMEN

Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome number and no indication of chromosome pairing. However, current evidence does not exclude that they may engage in sex on rare, cryptic occasions. Here we report the genome of a bdelloid rotifer, Adineta vaga (Davis, 1873), and show that its structure is incompatible with conventional meiosis. At gene scale, the genome of A. vaga is tetraploid and comprises both anciently duplicated segments and less divergent allelic regions. However, in contrast to sexual species, the allelic regions are rearranged and sometimes even found on the same chromosome. Such structure does not allow meiotic pairing; instead, we find abundant evidence of gene conversion, which may limit the accumulation of deleterious mutations in the absence of meiosis. Gene families involved in resistance to oxidation, carbohydrate metabolism and defence against transposons are significantly expanded, which may explain why transposable elements cover only 3% of the assembled sequence. Furthermore, 8% of the genes are likely to be of non-metazoan origin and were probably acquired horizontally. This apparent convergence between bdelloids and prokaryotes sheds new light on the evolutionary significance of sex.


Asunto(s)
Evolución Biológica , Conversión Génica/genética , Genoma/genética , Reproducción Asexuada/genética , Rotíferos/genética , Animales , Transferencia de Gen Horizontal/genética , Genómica , Meiosis/genética , Modelos Biológicos , Tetraploidía
2.
Mol Biol Evol ; 28(10): 2727-30, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21512106

RESUMEN

Transposable elements (TEs), such as short interspersed elements (SINEs), evolve rapidly and are generally restricted to specific lineages. Here, we demonstrate that a central core of the previously described Deu-domain located within DeuSINEs (Nishihara et al. 2006) is widely distributed throughout the Metazoa. We characterize five new SINEs with this core sequence from the genomes of cnidarians, molluscs, annelids, and arthropods. Because this domain can be traced back to the cnidarian-bilaterian split >600 Ma, we propose naming it the "Nin" domain (the meaning of the Japanese character "Nin" is to endure and hide). Given that conserved noncoding DNA, such as that derived from the activity of SINEs, can be functionally relevant for the host genome (Sasaki et al. 2008), our findings highlight the need to understand these functions and the roles they may have played in supporting the evolution of multicellular genomes.


Asunto(s)
Elementos Transponibles de ADN , Invertebrados/genética , Elementos de Nucleótido Esparcido Largo , Elementos de Nucleótido Esparcido Corto , Animales , Secuencia de Bases , Evolución Molecular , Invertebrados/clasificación , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
3.
Mob DNA ; 7: 7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27096009

RESUMEN

BACKGROUND: As Short Interspersed Elements (SINEs), human-specific Alu elements can be used for population genetic studies. Very recent inserts are polymorphic within and between human populations. In a sample of 30 elements originating from three different Alu subfamilies, we investigated whether they are preserved in prehistorical skeletal human remains from the Bronze Age Lichtenstein cave in Lower Saxony, Germany. In the present study, we examined a prehistoric triad of father, mother and daughter. RESULTS: For 26 of the 30 Alu loci investigated, definite results were obtained. We were able to demonstrate that presence/absence analyses of Alu elements can be conducted on individuals who lived 3,000 years ago. The preservation of the ancient DNA (aDNA) is good enough in two out of three ancient individuals to routinely allow the amplification of 500 bp fragments. The third individual revealed less well-preserved DNA, which results in allelic dropout or complete amplification failures. We here present an alternative molecular approach to deal with these degradation phenomena by using internal Alu subfamily specific primers producing short fragments of approximately 150 bp. CONCLUSIONS: Our data clearly show the possibility of presence/absence analyses of Alu elements in individuals from the Lichtenstein cave. Thus, we demonstrate that our method is reliably applicable for aDNA samples with good or moderate DNA preservation. This method will be very useful for further investigations with more Alu loci and larger datasets. Human population genetic studies and other large-scale investigations would provide insight into Alu SINE-based microevolutionary processes in humans during the last few thousand years and help us comprehend the evolutionary dynamics of our genome.

4.
Genes (Basel) ; 3(3): 409-22, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-24704977

RESUMEN

One of the most unexpected insights that followed from the completion of the human genome a decade ago was that more than half of our DNA is derived from transposable elements (TEs). Due to advances in high throughput sequencing technologies it is now clear that TEs comprise the largest molecular class within most metazoan genomes. TEs, once categorised as "junk DNA", are now known to influence genomic structure and function by increasing the coding and non-coding genetic repertoire of the host. In this way TEs are key elements that stimulate the evolution of metazoan genomes. This review highlights several lines of TE research including the horizontal transfer of TEs through host-parasite interactions, the vertical maintenance of TEs over long periods of evolutionary time, and the direct role that TEs have played in generating morphological novelty.

6.
Gene ; 441(1-2): 111-8, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19118606

RESUMEN

Transposable elements have been characterized in a number of vertebrates, including whole genomes of mammals, birds, and fishes. The Anolis carolinensis draft assembly provides the first opportunity to study retroposons in a reptilian genome. Here, we identified and reconstructed a number of retroposons based on database searches: Five Sauria short interspersed element (SINE) subfamilies, 5S-Sauria SINE chimeras, Anolis Bov-B long interspersed element (LINE), Anolis SINE 2, Anolis LINE 2, Anolis LINE 1, Anolis CR 1, and a chromodomain-containing Ty3/Gypsy LTR element. We focused on two SINE families (Anolis Sauria SINE and Anolis SINE 2) and their partner LINE families (Anolis Bov-B LINE and Anolis LINE 2). We demonstrate that each SINE/LINE pair is distributed similarly and predict that the retrotransposition of evolutionarily younger Sauria SINE members is via younger Bov-B LINE members while a correlation also exists between their respective evolutionarily older SINE/LINE members. The evolutionarily youngest Sauria SINE sequences evolved as part of novel rolling-circle transposons. The evolutionary time frame when Bov-B LINEs and Sauria SINEs were less active in their retrotransposition is characterized by a high retrotransposition burst of Anolis SINE 2 and Anolis LINE 2 elements. We also characterized the first full-length chromoviral LTR element in amniotes (Amn-ichi). This newly identified chromovirus is widespread in the Anolis genome and has been very well preserved, indicating that it is still active. Transposable elements in the Anolis genome account for approximately 20% of the total DNA sequence, whereas the proportion is more than double that in many mammalian genomes in which such elements have important biological functions. Nevertheless, 20% transposable element coverage is sufficient to predict that Anolis retroposons and other mobile elements also may have biologically and evolutionarily relevant functions. The new SINEs and LINEs and other ubiquitous genomic elements characterized in the Anolis genome will prove very useful for studies in comparative genomics, phylogenetics, and functional genetics.


Asunto(s)
Evolución Molecular , Genoma , Lagartos/genética , Filogenia , Secuencias Repetidas Terminales , Animales , Secuencia de Bases , Elementos de Nucleótido Esparcido Largo , Datos de Secuencia Molecular , Retroelementos , Alineación de Secuencia , Elementos de Nucleótido Esparcido Corto
7.
Proc Natl Acad Sci U S A ; 104(29): 12046-51, 2007 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-17623783

RESUMEN

Poxviruses (Poxviridae) are a family of double-stranded DNA viruses with no RNA stage. Members of the genus Orthopoxvirus (OPV) are highly invasive and virulent. It was recently shown that the taterapox virus (TATV) from a West African rodent is the sister of camelpox virus and therefore belongs to the clade closest to the variola virus (VARV), the etiological agent of smallpox. Although these OPVs are among the most dreaded pathogens on Earth, our current knowledge of their genomes, their origins, and their possible hosts is still very limited. Here, we report the horizontal transfer of a retroposon (known only from reptilian genomes) to the TATV genome. After isolating and analyzing different subfamilies of short interspersed elements (SINEs) from lizards and snakes, we identified a highly poisonous snake (Echis ocellatus) from West Africa as the closest species from which the SINE sequence discovered in the TATV genome (TATV-SINE) was transferred to the virus. We discovered direct repeats derived from the virus flanking the TATV-SINE, and the absence of any snake-derived DNA flanking the SINE. These data provide strong evidence that the TATV-SINE was actually transferred within the snake to the viral genome by retrotransposition and not by any horizontal transfer at the DNA level. We propose that the snake is another host for TATV, suggesting that VARV-related epidemiologically relevant viruses may have derived from our cold-blooded ancestors and that poxviruses are possible vectors for horizontal transfer of retroposons from reptiles to mammals.


Asunto(s)
Transferencia de Gen Horizontal/genética , Vectores Genéticos , Mamíferos/genética , Poxviridae/genética , Reptiles/genética , Retroelementos/genética , Animales , Secuencia de Bases , Secuencia de Consenso , Geografía , Datos de Secuencia Molecular , Filogenia , Elementos de Nucleótido Esparcido Corto/genética
8.
Mol Phylogenet Evol ; 43(1): 216-24, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17185004

RESUMEN

Morphological data have indicated that toothed whales form a monophyletic group. However, research published in the last several years has made the issue of the monophyly or paraphyly of toothed whales a subject of debate. Our group previously characterized three independent loci in which SINE insertions were shared among dolphins and sperm whales, thus supporting the traditional, morphologically based hypothesis of toothed whale monophyly. Although in recent years a few additional molecular works proposed this topology, there is still skepticism over this monophyly from the view point of molecular systematics. When the phylogeny of rapidly radiated taxa is examined using the SINE method, it is important to consider the ascertainment bias that arises when choosing a particular taxon for SINE loci screening. To overcome this methodological problem specific to the SINE method, we examined all possible topologies among sperm whales, dolphins and baleen whales by extensively screening SINE loci from species of all three lineages. We characterized nine independent SINE loci from the genomes of sperm whales and dolphins, all of which cluster sperm whales and dolphins but exclude baleen whales. Furthermore, we characterized ten independent loci from baleen whales, all of which were amplified in a common ancestor of these whales. From these observations, we conclude that toothed whales form a monophyletic group and that no ancestral SINE polymorphisms hinder their phylogenetic assignment despite the short divergence times of the major lineages of extant whales during evolution. These results suggest that a small population of common ancestors of all toothed whales ultimately diverged into the lineages of sperm whales and dolphins.


Asunto(s)
Cetáceos/genética , Genética de Población , Filogenia , Animales , Cetáceos/clasificación , Cartilla de ADN , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Elementos de Nucleótido Esparcido Corto/genética
9.
Mol Ecol ; 16(2): 415-29, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17217354

RESUMEN

Well-supported, congruent phylogeographic and biogeographic patterns permit the development of a priori phylogeographic and distributional predictions. In the southeastern Coastal Plain of the United States, the common discovery of east-west disjunctions (phylogeographic breaks and species' distributional boundaries) suggests that similar disjunctions should occur in codistributed taxa. Despite the near ubiquity of these disjunctions, the most recent morphological analyses of the flatwoods salamander, Ambystoma cingulatum, indicate that none occur in this low-vagility, Coastal Plain endemic. We conducted molecular and morphological analyses to test whether the flatwoods salamander is an exception to this common biogeographic pattern. Assessing geographic variation in this species is also an important management tool for this threatened, declining amphibian. We demonstrate that flatwoods salamanders, as predicted by comparisons to codistributed taxa, are polytypic with a major disjunction at the Apalachicola River. This drainage is a common site for east-west phylogeographic breaks, probably because repeated marine embayments during the Pliocene and Pleistocene interglacials generated barriers to gene flow. Based on mitochondrial DNA, morphology, and allozymes, we recognize two species of flatwoods salamanders -- Ambystoma cingulatum to the east of the Apalachicola drainage and Ambystoma bishopi to the west. Given this increased diversity, the conservation status of these two taxa may warrant re-evaluation. More generally, these results emphasize that in the absence of taxon-specific data, established comparative patterns can provide strong expectations for designing management units for unstudied species of conservation concern.


Asunto(s)
Ambystoma/anatomía & histología , Ambystoma/clasificación , Ambystoma/genética , Demografía , Filogenia , Análisis de Varianza , Animales , Secuencia de Bases , Pesos y Medidas Corporales , Cartilla de ADN , ADN Mitocondrial/genética , Geografía , Isoenzimas/química , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Componente Principal , Análisis de Secuencia de ADN , Sudeste de Estados Unidos , Especificidad de la Especie
10.
J Mol Evol ; 62(5): 630-44, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16612539

RESUMEN

SINEs are short interspersed retrotransposable elements that invade new genomic sites. Their retrotransposition depends on reverse transcriptase and endonuclease activities encoded by partner LINEs (long interspersed elements). Recent genomic research has demonstrated that retroposons account for at least 40% of the human genome. Hitherto, more than 30 families of SINEs have been characterized in mammalian genomes, comprising approximately 4600 extant species; the distribution and extent of SINEs in reptilian genomes, however, are poorly documented. With more than 7400 species of lizards and snakes, Squamata constitutes the largest and most diverse group of living reptiles. We have discovered and characterized a novel SINE family, Sauria SINEs, whose members are widely distributed among genomes of lizards, snakes, and tuataras. Sauria SINEs comprise a 5' tRNA-related region, a tRNA-unrelated region, and a 3' tail region (containing short tandem repeats) derived from LINEs. We distinguished eight Sauria SINE subfamilies in genomes of four major squamate lineages and investigated their evolutionary relationships. Our data illustrate the overall efficacy of Sauria SINEs as novel retrotransposable markers for elucidation of squamate evolutionary history. We show that all Sauria SINEs share an identical 3' sequence with Bov-B LINEs and propose that they utilize the enzymatic machinery of Bov-B LINEs for their own retrotransposition. This finding, along with the ubiquity of Bov-B LINEs previously demonstrated in squamate genomes, suggests that these LINEs have been an active partner of Sauria SINEs since this SINE family was generated more than 200 million years ago.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma/genética , Lagartos/genética , Elementos de Nucleótido Esparcido Corto/genética , Serpientes/genética , Animales , Secuencia de Bases , Evolución Molecular , Dosificación de Gen , Marcadores Genéticos , Elementos de Nucleótido Esparcido Largo/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , ARN de Transferencia/química , Alineación de Secuencia
11.
J Mol Evol ; 61(1): 1-11, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16007490

RESUMEN

Sequences from nuclear mitochondrial pseudogenes (numts) that originated by transfer of genetic information from mitochondria to the nucleus offer a unique opportunity to compare different regimes of molecular evolution. Analyzing a 1621-nt-long numt of the rRNA specifying mitochondrial DNA residing on human chromosome 3 and its corresponding mitochondrial gene in 18 anthropoid primates, we were able to retrace about 40 MY of primate rDNA evolutionary history. The results illustrate strengths and weaknesses of mtDNA data sets in reconstructing and dating the phylogenetic history of primates. We were able to show the following. In contrast to numt-DNA, (1) the nucleotide composition of mtDNA changed dramatically in the different primate lineages. This is assumed to lead to significant misinterpretations of the mitochondrial evolutionary history. (2) Due to the nucleotide compositional plasticity of primate mtDNA, the phylogenetic reconstruction combining mitochondrial and nuclear sequences is unlikely to yield reliable information for either tree topologies or branch lengths. This is because a major part of the underlying sequence evolution model--the nucleotide composition--is undergoing dramatic change in different mitochondrial lineages. We propose that this problem is also expressed in the occasional unexpected long branches leading to the "common ancestor" of orthologous numt sequences of different primate taxa. (3) The heterogeneous and lineage-specific evolution of mitochondrial sequences in primates renders molecular dating based on primate mtDNA problematic, whereas the numt sequences provide a much more reliable base for dating.


Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Seudogenes , Animales , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Primates
12.
Mol Biol Evol ; 20(10): 1659-68, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12885966

RESUMEN

Short interspersed nuclear elements (SINEs) are dispersed repetitive DNA sequences that are major components of all mammalian genomes. They have been described in almost all lineages of Euarchontoglires (rodents, rabbits, primates, flying lemurs, and tree shrews), except in flying lemurs. Most SINE family members are composed of three distinct regions: a 5' tRNA-related region, a tRNA-unrelated region, and a short tandem repeat at the 3' end that is AT-rich. The newly discovered SINE family in Cynocephalus deviates from this common structure. All 30 SINE loci analyzed in this family lack a tRNA-unrelated region and are composed exclusively of tRNA-related elements. Therefore, this novel SINE structure, described for the first time in mammalian genomes, was designated as t-SINE. The t-SINE family exhibits a high copy number and is specific to flying lemurs. Three major t-SINE subfamilies could be distinguished on the basis of characteristic nucleotides, deletions, insertions, and duplications. These sequence-specific characteristics within subfamilies and sub-subfamilies reveal that they are derived copies of distinct progenitors. We present evolutionary relationships between subfamilies and compare relationships between the subfamilies and the isoleucine tRNA gene. t-SINE amplification occurred through multiple sources and is supposedly mobilized via the L1-encoded reverse transcriptase-dependent retrotranspositional mechanism in trans.


Asunto(s)
Primates/genética , ARN de Transferencia , Elementos de Nucleótido Esparcido Corto , Animales , Secuencia de Bases , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
13.
Mol Phylogenet Evol ; 26(1): 155-64, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12470946

RESUMEN

The phylogeny of the Syndermata (Rotifera: Monogononta, Bdelloidea, Seisonidea; Acanthocephala: Palaeacanthocephala, Eoacanthocephala, Archiacanthocephala) is key to understanding the evolution of acanthocephalan endoparasitism from free-living ancestors. In the present study, maximum likelihood, distance/neighbor-joining, and maximum parsimony analyses have been carried out based on 18S rDNA data of 22 species (four new sequences). The results suggest a monophyletic origin of the Eurotatoria (Monogononta+Bdelloidea). Seison appears as the acanthocephalan sistergroup. Palaeacanthocephala split into an "Echinorhynchus"-and a "Leptorhynchoides"-group, the latter sharing a monophyletic origin with the Eoacanthocephala and Archiacanthocephala. As inferred from the phylogeny obtained acanthocephalan endoparasitism evolved from a common ancestor of Seison and Acanthocephala that lived epizoically on an early mandibulate. Probably, an acanthocephalan stem species invaded the mandibulate host, thus establishing an endoparasitic lifestyle. Subsequently, vertebrates (or gnathostomes) became part of the parasite's life cycle. In the stem line of the Archiacanthocephala, a terrestrial life cycle has evolved, with an ancestor of the Tracheata (Insecta, Myriapoda) acting as intermediate host.


Asunto(s)
Acantocéfalos/genética , Acantocéfalos/patogenicidad , Evolución Biológica , Parásitos/genética , ARN Ribosómico 18S/genética , Animales , Evolución Molecular , Funciones de Verosimilitud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA