Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478593

RESUMEN

Full-length RIM1 and 2 are key components of the presynaptic active zone that ubiquitously control excitatory and inhibitory neurotransmitter release. Here, we report that the function of the small RIM isoform RIM4, consisting of a single C2 domain, is strikingly different from that of the long isoforms. RIM4 is dispensable for neurotransmitter release but plays a postsynaptic, cell-type specific role in cerebellar Purkinje cells that is essential for normal motor function. In the absence of RIM4, Purkinje cell intrinsic firing is reduced and caffeine-sensitive, and dendritic integration of climbing fibre input is disturbed. Mice lacking RIM4, but not mice lacking RIM1/2, selectively in Purkinje cells exhibit a severe, hours-long paroxysmal dystonia. These episodes can also be induced by caffeine, ethanol or stress and closely resemble the deficits seen with mutations of the PNKD (paroxysmal non-kinesigenic dystonia) gene. Our data reveal essential postsynaptic functions of RIM proteins and show non-overlapping specialized functions of a small isoform despite high homology to a single domain in the full-length proteins.

2.
Glia ; 72(3): 643-659, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38031824

RESUMEN

Long-term modifications of astrocyte function and morphology are well known to occur in epilepsy. They are implicated in the development and manifestation of the disease, but the relevant mechanisms and their pathophysiological role are not firmly established. For instance, it is unclear how quickly the onset of epileptic activity triggers astrocyte morphology changes and what the relevant molecular signals are. We therefore used two-photon excitation fluorescence microscopy to monitor astrocyte morphology in parallel to the induction of epileptiform activity. We uncovered astrocyte morphology changes within 10-20 min under various experimental conditions in acute hippocampal slices. In vivo, induction of status epilepticus resulted in similarly altered astrocyte morphology within 30 min. Further analysis in vitro revealed a persistent volume reduction of peripheral astrocyte processes triggered by induction of epileptiform activity. In addition, an impaired diffusion within astrocytes and within the astrocyte network was observed, which most likely is a direct consequence of the astrocyte remodeling. These astrocyte morphology changes were prevented by inhibition of the Rho GTPase RhoA and of the Rho-associated kinase (ROCK). Selective deletion of ROCK1 but not ROCK2 from astrocytes also prevented the morphology change after induction of epileptiform activity and reduced epileptiform activity. Together these observations reveal that epileptic activity triggers a rapid ROCK1-dependent astrocyte morphology change, which is mechanistically linked to the strength of epileptiform activity. This suggests that astrocytic ROCK1 signaling is a maladaptive response of astrocytes to the onset of epileptic activity.


Asunto(s)
Epilepsia , Estado Epiléptico , Humanos , Astrocitos , Quinasas Asociadas a rho , Hipocampo
3.
Neurobiol Dis ; 190: 106364, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38008342

RESUMEN

Gangliogliomas (GGs) represent the most frequent glioneuronal tumor entity associated with chronic recurrent seizures; rare anaplastic GGs variants retain the glioneuronal character. So far, key mechanisms triggering chronic hyperexcitability in the peritumoral area are unresolved. Based on a recent mouse model for anaplastic GG (BRAFV600E, mTOR activation and Trp53KO) we here assessed the influence of GG-secreted factors on non-neoplastic cells in-vitro. We generated conditioned medium (CM) from primary GG cell cultures to developing primary cortical neurons cultured on multielectrode-arrays and assessed their electrical activity in comparison to neurons incubated with naïve and neuronal CMs. Our results showed that the GG CM, while not affecting the mean firing rates of networks, strongly accelerated the formation of functional networks as indicated increased synchrony of firing and burst activity. Washing out the GG CM did not reverse these effects indicating an irreversible effect on the neuronal network. Mass spectrometry analysis of GG CM detected several enriched proteins associated with neurogenesis as well as gliogenesis, including Gap43, App, Apoe, S100a8, Tnc and Sod1. Concomitantly, immunocytochemical analysis of the neuronal cultures exposed to GG CM revealed abundant astrocytes suggesting that the GG-secreted factors induce astroglial proliferation. Pharmacological inhibition of astrocyte proliferation only partially reversed the accelerated network maturation in neuronal cultures exposed to GG CM indicating that the GG CM exerts a direct effect on the neuronal component. Taken together, we demonstrate that GG-derived paracrine signaling alone is sufficient to induce accelerated neuronal network development accompanied by astrocytic proliferation. Perspectively, a deeper understanding of factors involved may serve as the basis for future therapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Ganglioglioma , Humanos , Animales , Ratones , Ganglioglioma/complicaciones , Ganglioglioma/metabolismo , Ganglioglioma/patología , Neoplasias Encefálicas/metabolismo , Alta del Paciente , Convulsiones/complicaciones , Neuronas/metabolismo
4.
Ann Neurol ; 93(3): 536-550, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36411525

RESUMEN

OBJECTIVE: Some patients unexpectedly display an unfavorable cognitive course after epilepsy surgery subsequent to any direct cognitive sequelae of the surgical treatment. Therefore, we conducted in-depth neuropathological examinations of resective specimens from corresponding patients to provide insights as to the underlying disease processes. METHODS: In this study, cases with significant cognitive deterioration following a previous postoperative assessment were extracted from the neuropsychological database of a longstanding epilepsy surgical program. An extensive reanalysis of available specimens was performed using current, state-of-the-art neuropathological examinations. Patients without cognitive deterioration but matched in regard to basic pathologies served as controls. RESULTS: Among the 355 operated patients who had undergone more than one postoperative neuropsychological examination, 30 (8%) showed significant cognitive decline in the period after surgery. Of the 24 patients with available specimens, 71% displayed further neuropathological changes in addition to the typical spectrum (ie, hippocampal sclerosis, focal cortical dysplasias, vascular lesions, and low-grade tumors), indicating (1) a secondary, putatively epilepsy-independent neurodegenerative disease process; (2) limbic inflammation; or (3) the enigmatic pathology pattern of "hippocampal gliosis" without segmental neurodegeneration. In the controls, the matched individual principal epilepsy-associated pathologies were not found in combination with the secondary pathology patterns of the study group. INTERPRETATION: Our findings indicate that patients who unexpectedly displayed unfavorable cognitive development beyond any direct surgical effects show rare and very particular pathogenetic causes or parallel, presumably independent, neurodegenerative alterations. A multicenter collection of such cases would be appreciated to discern presurgical biomarkers that help with surgical decision-making. ANN NEUROL 2023;93:536-550.


Asunto(s)
Disfunción Cognitiva , Epilepsia , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/patología , Epilepsia/etiología , Hipocampo/patología , Disfunción Cognitiva/patología , Cognición
5.
Brain ; 146(4): 1436-1452, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36314080

RESUMEN

Temporal lobe epilepsy (TLE) is one of the syndromes linked to antibodies against glutamic acid decarboxylase (GAD). It has been questioned whether 'limbic encephalitis with GAD antibodies' is a meaningful diagnostic entity. The immunopathogenesis of GAD-TLE has remained enigmatic. Improvement of immunological treatability is an urgent clinical concern. We retrospectively assessed the clinical, MRI and CSF course as well as brain tissue of 15 adult patients with GAD-TLE who underwent temporal lobe surgery. Brain tissue was studied by means of immunohistochemistry, multiplex fluorescent microscopy and transcriptomic analysis for inflammatory mediators and neuronal degeneration. In 10 patients, there was a period of mediotemporal swelling and T2 signal increase; in nine cases this occurred within the first 6 years after symptom onset. This resulted in unilateral or bilateral hippocampal sclerosis; three cases developed hippocampal sclerosis within the first 2 years. All CSF studies done within the first year (n = 6) revealed intrathecal synthesis of immunoglobulin G. Temporal lobe surgeries were done after a median disease duration of 9 years (range 3 weeks to 60 years). Only two patients became seizure-free. Brain parenchyma collected during surgery in the first 6 years revealed high numbers of plasma cells but no signs of antibody-mediated tissue damage. Even more dense was the infiltration by CD8+ cytotoxic T lymphocytes (CTLs) that were seen to locally proliferate. Further, a portion of these cells revealed an antigen-specific resident memory T cell phenotype. Finally, CTLs with cytotoxic granzyme B+ granules were also seen in microglial nodules and attached to neurons, suggesting a CTL-mediated destruction of these cells. With longer disease duration, the density of all lymphocytes decreased. Whole transcriptome analysis in early/active cases (but not in late/inactive stages) revealed 'T cell immunity' and 'Regulation of immune processes' as the largest overrepresented clusters. To a lesser extent, pathways associated with B cells and neuronal degeneration also showed increased representation. Surgically treated patients with GAD-TLE go through an early active inflammatory, 'encephalitic' stage (≤6 years) with CTL-mediated, antigen-driven neuronal loss and antibody-producing plasma cells but without signs of complement-mediated cell death. Subsequently, patients enter an apparently immunologically inactive or low-active stage with ongoing seizures, probably caused by the structural damage to the temporal lobe. 'Limbic encephalitis' with GAD antibodies should be subsumed under GAD-TLE. The early tissue damage explains why immunotherapy does not usually lead to freedom from seizures.


Asunto(s)
Encefalitis , Epilepsia del Lóbulo Temporal , Encefalitis Límbica , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Complejo de Ataque a Membrana del Sistema Complemento , Estudios Retrospectivos , Convulsiones/complicaciones , Glutamato Descarboxilasa , Inmunoglobulina G , Encefalitis/complicaciones , Encefalitis Límbica/complicaciones , Neuronas/metabolismo , Imagen por Resonancia Magnética/métodos
6.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33402532

RESUMEN

Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available. Therefore, we used CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice. Mirroring the human pathology, mutant Pigv341E mice exhibited deficits in motor coordination, cognitive impairments, and alterations in sociability and sleep patterns, as well as increased seizure susceptibility. Furthermore, immunohistochemistry revealed reduced synaptophysin immunoreactivity in Pigv341E mice, and electrophysiology recordings showed decreased hippocampal synaptic transmission that could underlie impaired memory formation. In single-cell RNA sequencing, Pigv341E-hippocampal cells exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction in Abl1 transcript levels in several cell clusters suggested a link to the signaling pathway of GPI-anchored ephrins. We also observed elevated levels of Hdc transcripts, which might affect histamine metabolism with consequences for circadian rhythm. This mouse model will not only open the doors to further investigation into the pathophysiology of GPIBD, but will also deepen our understanding of the role of GPI-anchor-related pathways in brain development.


Asunto(s)
Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Manosiltransferasas/metabolismo , Anomalías Múltiples/genética , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Epilepsia/genética , Glicosilfosfatidilinositoles/deficiencia , Hipocampo/metabolismo , Discapacidad Intelectual/genética , Manosiltransferasas/fisiología , Ratones , Ratones Endogámicos C57BL , Mutación , Mutación Missense , Fenotipo , Ingeniería de Proteínas/métodos , Convulsiones/genética , Convulsiones/fisiopatología
7.
Dev Neurosci ; 45(2): 53-65, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36538906

RESUMEN

Gangliogliomas (GGs), composed of dysmorphic neurons and neoplastic astroglia, represent the most frequent tumor entity associated with chronic recurrent epileptic seizures. So far, a systematic analysis of potential differences in neurochemical profiles of dysmorphic tumoral neurons as well as neurons of the peritumoral microenvironment (PTME) was hampered by the inability to unequivocally differentiate between the distinct neuronal components in human GG biopsies. Here, we have applied a novel GG mouse model that allows to clearly resolve the neurochemical profiles of GG-intrinsic versus PTME neurons. For this purpose, glioneuronal tumors in mice were induced by intraventricular in utero electroporation (IUE) of piggyBac-based plasmids for BRAFV600E and activated Akt (AktT308D/S473D, further referred to as AktDD) and analyzed neurochemically by immunocytochemistry against specific marker proteins. IUE of BRAFV600E/AktDD in mice resulted in tumors with the morphological features of human GGs. Our immunocytochemical analysis revealed a strong reduction of GABAARα1 immunoreactivity in the tumor compared to the PTME. In contrast, the extent of NMDAR1 immunoreactivity in the tumor appeared comparable to the PTME. Interestingly, tumor cells maintained the potential to express both receptors. Fittingly, the abundance of the presynaptic vesicular neurotransmitter transporters VGLUT1 and VGAT was also decreased in the tumor. Additionally, the fraction of parvalbumin and somatostatin nonneoplastic interneurons was reduced. In conclusion, changes in the levels of key proteins in neurotransmitter signaling suggest a loss of synapses and may thereby lead to neuronal network alterations in mouse GGs.


Asunto(s)
Neoplasias Encefálicas , Epilepsia , Ganglioglioma , Humanos , Ratones , Animales , Ganglioglioma/complicaciones , Ganglioglioma/metabolismo , Ganglioglioma/patología , Convulsiones , Neuronas/metabolismo , Epilepsia/complicaciones , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Microambiente Tumoral
8.
J Neurosci ; 41(39): 8111-8125, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34400520

RESUMEN

The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. However, its function in neurons is unknown. We show that, during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ third-order dendrites both in male and in female mice. Moreover, we demonstrate that SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown caused a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, whereas excitatory neurotransmission was unaffected. Finally, we show that this mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations revealed significant loss of SLK expression. Overall, the present data identify SLK as a key regulator of both dendritic complexity during development and inhibitory synapse maintenance.SIGNIFICANCE STATEMENT We show that dysmorphic neurons of human epileptogenic brain lesions have decreased levels of the Ste20-like kinase (SLK). Decreasing SLK expression in mouse neurons revealed that SLK has essential functions in forming the neuronal dendritic tree and in maintaining inhibitory connections with neighboring neurons.


Asunto(s)
Corteza Cerebral/metabolismo , Dendritas/genética , Inhibición Neural/genética , Proteínas Serina-Treonina Quinasas/genética , Sinapsis/genética , Transmisión Sináptica/fisiología , Adolescente , Adulto , Anciano , Animales , Corteza Cerebral/patología , Niño , Preescolar , Dendritas/metabolismo , Dendritas/patología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Adulto Joven
9.
Ann Neurol ; 89(4): 666-685, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368582

RESUMEN

OBJECTIVE: Limbic encephalitis (LE) comprises a spectrum of inflammatory changes in affected brain structures including the presence of autoantibodies and lymphoid cells. However, the potential of distinct lymphocyte subsets alone to elicit key clinicopathological sequelae of LE potentially inducing temporal lobe epilepsy (TLE) with chronic spontaneous seizures and hippocampal sclerosis (HS) is unresolved. METHODS: Here, we scrutinized pathogenic consequences emerging from CD8+ T cells targeting hippocampal neurons by recombinant adeno-associated virus-mediated expression of the model-autoantigen ovalbumin (OVA) in CA1 neurons of OT-I/RAG1-/- mice (termed "OVA-CD8+ LE model"). RESULTS: Viral-mediated antigen transfer caused dense CD8+ T cell infiltrates confined to the hippocampal formation starting on day 5 after virus transduction. Flow cytometry indicated priming of CD8+ T cells in brain-draining lymph nodes preceding hippocampal invasion. At the acute model stage, the inflammatory process was accompanied by frequent seizure activity and impairment of hippocampal memory skills. Magnetic resonance imaging scans at day 7 of the OVA-CD8+ LE model revealed hippocampal edema and blood-brain barrier disruption that converted into atrophy until day 40. CD8+ T cells specifically targeted OVA-expressing, SIINFEKL-H-2Kb -positive CA1 neurons and caused segmental apoptotic neurodegeneration, astrogliosis, and microglial activation. At the chronic model stage, mice exhibited spontaneous recurrent seizures and persisting memory deficits, and the sclerotic hippocampus was populated with CD8+ T cells escorted by NK cells. INTERPRETATION: These data indicate that a CD8+ T-cell-initiated attack of distinct hippocampal neurons is sufficient to induce LE converting into TLE-HS. Intriguingly, the role of CD8+ T cells exceeds neurotoxic effects and points to their major pathogenic role in TLE following LE. ANN NEUROL 2021;89:666-685.


Asunto(s)
Linfocitos T CD8-positivos/patología , Epilepsia del Lóbulo Temporal/etiología , Epilepsia del Lóbulo Temporal/patología , Encefalitis Límbica/complicaciones , Encefalitis Límbica/patología , Animales , Barrera Hematoencefálica/patología , Región CA1 Hipocampal/patología , Epilepsia del Lóbulo Temporal/psicología , Hipocampo/patología , Proteínas de Homeodominio/genética , Encefalitis Límbica/psicología , Ganglios Linfáticos/patología , Imagen por Resonancia Magnética , Trastornos de la Memoria/etiología , Trastornos de la Memoria/psicología , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/patología , Ovalbúmina/genética , Ovalbúmina/inmunología , Fragmentos de Péptidos/genética , Convulsiones/genética , Convulsiones/patología
10.
Acta Neuropathol ; 144(1): 107-127, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35551471

RESUMEN

Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry. In healthy individuals, hippocampal volume was measured using MRI. Analyses were performed stratified by rs7587026 type. To study the functional consequences of increased SCN1A expression, we generated, using transposon-mediated bacterial artificial chromosome transgenesis, a zebrafish line expressing exogenous scn1a, and performed EEG analysis on larval optic tecta at 4 day post-fertilization. Finally, we used an in vitro promoter analysis to study whether the genetic motif containing rs7587026 influences promoter activity. Hippocampal SCN1A expression differed by rs7587026 genotype (Kruskal-Wallis test P = 0.004). Individuals homozygous for the minor allele showed significantly increased expression compared to those homozygous for the major allele (Dunn's test P = 0.003), and to heterozygotes (Dunn's test P = 0.035). No statistically significant differences in hippocampal neuronal cell loss were observed between the three genotypes. Among 597 healthy participants, individuals homozygous for the minor allele at rs7587026 displayed significantly reduced mean hippocampal volume compared to major allele homozygotes (Cohen's D = - 0.28, P = 0.02), and to heterozygotes (Cohen's D = - 0.36, P = 0.009). Compared to wild type, scn1lab-overexpressing zebrafish larvae exhibited more frequent spontaneous seizures [one-way ANOVA F(4,54) = 6.95 (P < 0.001)]. The number of EEG discharges correlated with the level of scn1lab overexpression [one-way ANOVA F(4,15) = 10.75 (P < 0.001]. Finally, we showed that a 50 bp promoter motif containing rs7587026 exerts a strong regulatory role on SCN1A expression, though we could not directly link this to rs7587026 itself. Our results develop the mechanistic link between rs7587026 and mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures. Furthermore, we propose that quantitative precision may be important when increasing SCN1A expression in current strategies aiming to treat seizures in conditions involving SCN1A haploinsufficiency, such as Dravet syndrome.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Convulsiones Febriles , Proteínas de Pez Cebra/metabolismo , Animales , Epilepsia/genética , Epilepsia del Lóbulo Temporal/genética , Genómica , Gliosis/patología , Hipocampo/patología , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Esclerosis/patología , Convulsiones Febriles/complicaciones , Convulsiones Febriles/genética , Pez Cebra
11.
Epilepsia ; 63(9): e100-e105, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35735209

RESUMEN

Patients with anti-leucine-rich glioma-inactivated 1 protein (LGI1) or anti-contactin-associated protein 2 (CASPR2) antibody encephalitis typically present with frequent epileptic seizures. The seizures generally respond well to immunosuppressive therapy, and the long-term seizure outcome seems to be favorable. Consequentially, diagnosing acute symptomatic seizures secondary to autoimmune encephalitis instead of autoimmune epilepsy was proposed. However, published data on long-term seizure outcomes in CASPR2 and LGI1 antibody encephalitis are mostly based on patient reports, and seizure underreporting is a recognized issue. Clinical records from our tertiary epilepsy center were screened retrospectively for patients with LGI1 and CASPR2 antibody encephalitis who reported seizure freedom for at least 3 months and received video-electroencephalography (EEG) for >24 h at follow-up visits. Twenty (LGI1, n = 15; CASPR2, n = 5) of 32 patients with LGI1 (n = 24) and CASPR2 (n = 8) antibody encephalitis fulfilled these criteria. We recorded focal aware and impaired awareness seizures in four of these patients (20%) with reported seizure-free intervals ranging from 3 to 27 months. Our results question the favorable seizure outcome in patients with CASPR2 and LGI1 antibody encephalitis and suggest that the proportion of patients who have persistent seizures may be greater. Our findings underline the importance of prolonged video-EEG telemetry in this population.


Asunto(s)
Encefalitis , Epilepsia , Autoanticuerpos , Encefalitis/complicaciones , Epilepsia/complicaciones , Humanos , Péptidos y Proteínas de Señalización Intracelular , Estudios Retrospectivos , Convulsiones/complicaciones , Convulsiones/etiología
12.
Ann Neurol ; 87(6): 869-884, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32196746

RESUMEN

OBJECTIVE: Assess occurrence of the dendritic spine scaffolding protein Drebrin as a pathophysiologically relevant autoantibody target in patients with recurrent seizures and suspected encephalitis as leading symptoms. METHODS: Sera of 4 patients with adult onset epilepsy and suspected encephalitis of unresolved etiology and equivalent results in autoantibody screening were subjected to epitope identification. We combined a wide array of approaches, ranging from immunoblotting, immunoprecipitation, mass spectrometry, subcellular binding pattern analyses in primary neuronal cultures, and immunohistochemistry in brains of wild-type and Drebrin knockout mice to in vitro analyses of impaired synapse formation, morphology, and aberrant neuronal excitability by antibody exposure. RESULTS: In the serum of a patient with adult onset epilepsy and suspected encephalitis, a strong signal at ∼70kDa was detected by immunoblotting, for which mass spectrometry revealed Drebrin as the putative antigen. Three other patients whose sera also showed strong immunoreactivity around 70kDa on Western blotting were also anti-Drebrin-positive. Seizures, memory impairment, and increased protein content in cerebrospinal fluid occurred in anti-Drebrin-seropositive patients. Alterations in cerebral magnetic resonance imaging comprised amygdalohippocampal T2-signal increase and hippocampal sclerosis. Diagnostic biopsy revealed T-lymphocytic encephalitis in an anti-Drebrin-seropositive patient. Exposure of primary hippocampal neurons to anti-Drebrin autoantibodies resulted in aberrant synapse composition and Drebrin distribution as well as increased spike rates and the emergence of burst discharges reflecting network hyperexcitability. INTERPRETATION: Anti-Drebrin autoantibodies define a chronic syndrome of recurrent seizures and neuropsychiatric impairment as well as inflammation of limbic and occasionally cortical structures. Immunosuppressant therapies should be considered in this disorder. ANN NEUROL 2020;87:869-884.


Asunto(s)
Autoanticuerpos/inmunología , Encefalitis/inmunología , Neuropéptidos/inmunología , Convulsiones/inmunología , Adulto , Anciano , Animales , Encefalitis/diagnóstico por imagen , Epítopos/inmunología , Femenino , Hipocampo/inmunología , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos Mentales/inmunología , Trastornos Mentales/psicología , Ratones Noqueados , Persona de Mediana Edad , Neuroimagen , Convulsiones/diagnóstico por imagen , Sinapsis/inmunología , Adulto Joven
13.
J Neurosci ; 39(17): 3175-3187, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-30792272

RESUMEN

Transient brain insults, including status epilepticus (SE), can trigger a period of epileptogenesis during which functional and structural reorganization of neuronal networks occurs resulting in the onset of focal epileptic seizures. In recent years, mechanisms that regulate the dynamic transcription of individual genes during epileptogenesis and thereby contribute to the development of a hyperexcitable neuronal network have been elucidated. Our own results have shown early growth response 1 (Egr1) to transiently increase expression of the T-type voltage-dependent Ca2+ channel (VDCC) subunit CaV3.2, a key proepileptogenic protein. However, epileptogenesis involves complex and dynamic transcriptomic alterations; and so far, our understanding of the transcriptional control mechanism of gene regulatory networks that act in the same processes is limited. Here, we have analyzed whether Egr1 acts as a key transcriptional regulator for genes contributing to the development of hyperexcitability during epileptogenesis. We found Egr1 to drive the expression of the VDCC subunit α2δ4, which was augmented early and persistently after pilocarpine-induced SE. Furthermore, we show that increasing levels of α2δ4 in the CA1 region of the hippocampus elevate seizure susceptibility of mice by slightly decreasing local network activity. Interestingly, we also detected increased expression levels of Egr1 and α2δ4 in human hippocampal biopsies obtained from epilepsy surgery. In conclusion, Egr1 controls the abundance of the VDCC subunits CaV3.2 and α2δ4, which act synergistically in epileptogenesis, and thereby contributes to a seizure-induced "transcriptional Ca2+ channelopathy."SIGNIFICANCE STATEMENT The onset of focal recurrent seizures often occurs after an epileptogenic process induced by transient insults to the brain. Recently, transcriptional control mechanisms for individual genes involved in converting neurons hyperexcitable have been identified, including early growth response 1 (Egr1), which activates transcription of the T-type Ca2+ channel subunit CaV3.2. Here, we find Egr1 to regulate also the expression of the voltage-dependent Ca2+ channel subunit α2δ4, which was augmented after pilocarpine- and kainic acid-induced status epilepticus. In addition, we observed that α2δ4 affected spontaneous network activity and the susceptibility for seizure induction. Furthermore, we detected corresponding dynamics in human biopsies from epilepsy patients. In conclusion, Egr1 orchestrates a seizure-induced "transcriptional Ca2+ channelopathy" consisting of CaV3.2 and α2δ4, which act synergistically in epileptogenesis.


Asunto(s)
Canales de Calcio/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Convulsiones/metabolismo , Estado Epiléptico/metabolismo , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/fisiopatología , Humanos , Ácido Kaínico , Masculino , Ratones , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Pilocarpina , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/fisiopatología
14.
J Neurosci ; 38(24): 5596-5605, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29789377

RESUMEN

Despite the development of numerous novel anticonvulsant drugs, ∼30% of epilepsy patients remain refractory to antiepileptic drugs (AEDs). Many established and novel AEDs reduce hyperexcitability via voltage- and use-dependent inhibition of voltage-gated Na+ channels. For the widely used anticonvulsant carbamazepine (CBZ), use-dependent block of Na+ channels is significantly reduced both in experimental and human epilepsy. However, the molecular underpinnings of this potential cellular mechanism for pharmacoresistance have remained enigmatic.Here, we describe the mechanism that leads to the emergence of CBZ-resistant Na+ channels. We focused on the endogenous polyamine system, which powerfully modulates Na+ channels in a use-dependent manner. We had shown previously that the intracellular polyamine spermine is reduced in chronic epilepsy, resulting in increased persistent Na+ currents. Because spermine and CBZ both bind use-dependently in spatial proximity within the Na+ channel pore, we hypothesized that spermine loss might also be related to diminished CBZ response. Using the pilocarpine model of refractory epilepsy in male rats and whole-cell patch-clamp recordings, we first replicated the reduction of use-dependent block by CBZ in chronically epileptic animals. We then substituted intracellular spermine via the patch pipette in different concentrations. Under these conditions, we found that exogenous spermine significantly rescues use-dependent block of Na+ channels by CBZ. These findings indicate that an unexpected modulatory mechanism, depletion of intracellular polyamines, leads both to increased persistent Na+ currents and to diminished CBZ sensitivity of Na+ channels. These findings could lead to novel strategies for overcoming pharmacoresistant epilepsy that target the polyamine system.SIGNIFICANCE STATEMENT Pharmacoresistant epilepsy affects ∼18 million people worldwide, and intense efforts have therefore been undertaken to uncover the underlying molecular and cellular mechanisms. One of the key known candidate mechanisms of pharmacoresistance has been a loss of use-dependent Na+ channel block by the anticonvulsant carbamazepine (CBZ), both in human and experimental epilepsies. Despite intense scrutiny, the molecular mechanisms underlying this phenomenon have not been elucidated. We now show that a loss of intracellular spermine in chronic epilepsy is a major causative factor leading to the development of CBZ-resistant Na+ currents. This finding can be exploited both for the screening of anticonvulsants in expression systems, and for novel strategies to overcome pharmacoresistance that target the polyamine system.


Asunto(s)
Anticonvulsivantes/farmacología , Carbamazepina/farmacología , Epilepsia Refractaria/metabolismo , Epilepsia Refractaria/fisiopatología , Espermina/metabolismo , Animales , Poliaminas Biogénicas/metabolismo , Resistencia a Medicamentos/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
15.
Brain ; 141(5): 1350-1374, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29538625

RESUMEN

De novo heterozygous mutations in STXBP1/Munc18-1 cause early infantile epileptic encephalopathies (EIEE4, OMIM #612164) characterized by infantile epilepsy, developmental delay, intellectual disability, and can include autistic features. We characterized the cellular deficits for an allelic series of seven STXBP1 mutations and developed four mouse models that recapitulate the abnormal EEG activity and cognitive aspects of human STXBP1-encephalopathy. Disease-causing STXBP1 variants supported synaptic transmission to a variable extent on a null background, but had no effect when overexpressed on a heterozygous background. All disease variants had severely decreased protein levels. Together, these cellular studies suggest that impaired protein stability and STXBP1 haploinsufficiency explain STXBP1-encephalopathy and that, therefore, Stxbp1+/- mice provide a valid mouse model. Simultaneous video and EEG recordings revealed that Stxbp1+/- mice with different genomic backgrounds recapitulate the seizure/spasm phenotype observed in humans, characterized by myoclonic jerks and spike-wave discharges that were suppressed by the antiepileptic drug levetiracetam. Mice heterozygous for Stxbp1 in GABAergic neurons only, showed impaired viability, 50% died within 2-3 weeks, and the rest showed stronger epileptic activity. c-Fos staining implicated neocortical areas, but not other brain regions, as the seizure foci. Stxbp1+/- mice showed impaired cognitive performance, hyperactivity and anxiety-like behaviour, without altered social behaviour. Taken together, these data demonstrate the construct, face and predictive validity of Stxbp1+/- mice and point to protein instability, haploinsufficiency and imbalanced excitation in neocortex, as the underlying mechanism of STXBP1-encephalopathy. The mouse models reported here are valid models for development of therapeutic interventions targeting STXBP1-encephalopathy.


Asunto(s)
Encefalopatías/complicaciones , Encefalopatías/genética , Epilepsia/fisiopatología , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Proteínas Munc18/genética , Animales , Anticonvulsivantes/uso terapéutico , Encefalopatías/tratamiento farmacológico , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Conducta Exploratoria/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Discapacidad Intelectual/complicaciones , Levetiracetam/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética
16.
Epilepsia ; 58(7): 1159-1171, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28542864

RESUMEN

OBJECTIVE: Seizures in mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis are thought to develop with various latency intervals after an initial transient brain insult. To study seizure dynamics after an initial transient precipitating insult in a systematic fashion, we utilized continuous video-electroencephalography (EEG) monitoring after the induction of status epilepticus (SE) in a mouse MTLE model. METHODS: Continuous 24/7 video/telemetric hippocampal EEG recordings in the systemic pilocarpine MTLE mouse model. RESULTS: After SE, we observed emerging seizures interfering with the circadian EEG rhythms. The physiologic circadian EEG pattern of mice was transiently suppressed for 2.9 (mean) ± (SEM) 0.5 days after SE. This period was accompanied predominately by nonconvulsive seizure activity, followed by convulsive seizures at later stages. After the circadian rhythm was restored, spontaneous generalized seizures occurred mainly in a clustered manner in a narrow time window between 4 and 7 p.m. (light cycle 7 a.m./7 p.m.). Moreover, we demonstrate that depth-electrode implantation surgery transiently disturbs the physiologic EEG circadian cycle; variation of the time point of SE induction after electrode insertion surgery revealed a substantial impact on the epilepsy phenotype, which was more severe when SE occurred after postsurgical reappearance of EEG circadian cycling. SIGNIFICANCE: These data have several experimental and pathophysiologic implications. The impact of depth-electrode surgery on the phenotype has to be tightly controlled. In mice monitored after pilocarpine-induced SE, the "epileptogenesis" period is characterized by the dynamics of epileptiform activity toward behavioral recurrent seizure patterns. The striking clustering of spontaneous seizures at the transition from sleep to activity stages of mice has to be taken into account for future studies on the model. Improving our understanding of the molecular mechanisms that determine the circadian dynamics of seizure threshold remains an intriguing task for the future.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Electroencefalografía/efectos de los fármacos , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Pilocarpina , Procesamiento de Señales Asistido por Computador , Estado Epiléptico/inducido químicamente , Estado Epiléptico/fisiopatología , Grabación en Video , Animales , Enfermedad Crónica , Análisis por Conglomerados , Modelos Animales de Enfermedad , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis , Sueño/efectos de los fármacos , Sueño/fisiología , Telemetría , Vigilia/efectos de los fármacos , Vigilia/fisiología
17.
J Neurosci ; 35(46): 15240-53, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26586813

RESUMEN

Dendritic voltage-gated ion channels profoundly shape the integrative properties of neuronal dendrites. In epilepsy, numerous changes in dendritic ion channels have been described, all of them due to either their altered transcription or phosphorylation. In pilocarpine-treated chronically epileptic rats, we describe a novel mechanism that causes an increased proximal dendritic persistent Na(+) current (INaP). We demonstrate using a combination of electrophysiology and molecular approaches that the upregulation of dendritic INaP is due to a relief from polyamine-dependent inhibition. The polyamine deficit in hippocampal neurons is likely caused by an upregulation of the degrading enzyme spermidine/spermine acetyltransferase. Multiphoton glutamate uncaging experiments revealed that the increase in dendritic INaP causes augmented dendritic summation of excitatory inputs. These results establish a novel post-transcriptional modification of ion channels in chronic epilepsy and may provide a novel avenue for treatment of temporal lobe epilepsy. SIGNIFICANCE STATEMENT: In this paper, we describe a novel mechanism that causes increased dendritic persistent Na(+) current. We demonstrate using a combination of electrophysiology and molecular approaches that the upregulation of persistent Na(+) currents is due to a relief from polyamine-dependent inhibition. The polyamine deficit in hippocampal neurons is likely caused by an upregulation of the degrading enzyme spermidine/spermine acetyltransferase. Multiphoton glutamate uncaging experiments revealed that the increase in dendritic persistent Na current causes augmented dendritic summation of excitatory inputs. We believe that these results establish a novel post-transcriptional modification of ion channels in chronic epilepsy.


Asunto(s)
Región CA1 Hipocampal/patología , Dendritas/fisiología , Regulación hacia Abajo/fisiología , Canales de Sodio/fisiología , Espermina/metabolismo , Estado Epiléptico/patología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Análisis de Varianza , Animales , Dendritas/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Humanos , Técnicas In Vitro , Masculino , Agonistas Muscarínicos/toxicidad , Pilocarpina/toxicidad , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Estadísticas no Paramétricas , Estado Epiléptico/inducido químicamente , Sinaptofisina/metabolismo , Tetrodotoxina/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
18.
Neurobiol Dis ; 95: 134-44, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27425891

RESUMEN

Tuberous sclerosis (TSC) is a phacomatosis associated with highly differentiated malformations including tubers in the brain. Those are composed of large dysplastic neurons and 'giant cells'. Cortical tubers are frequent causes of chronic seizures and resemble neuropathologically focal cortical dysplasias (FCD) type IIb. Patients with FCDIIb, however, lack additional stigmata of TSC. Mutations and allelic variants of the TSC1 gene have been observed in patients with tubers as well as FCDIIb. Those include hamartin(R692X) and hamartin(R786X), stop mutants frequent in TSC patients and hamartin(H732Y) frequent in FCDIIb. Expression of these variants in cell culture led to aberrant distribution of corresponding proteins. We here scrutinized morphological and structural effects of these TSC1 variants by intraventricular in utero electroporation (IUE), genetically mimicking the discrete focal character and a somatic postzygotic mosaicism of the lesion, focusing on the gene dosage required for tuber-like lesions to emerge in Tsc1(flox/flox) mice. Expression of only hamartin(R692X) as well as hamartin(R786X) led to a 2-fold enlargement of neurons with high pS6 immunoreactivity, stressing their in vivo pathogenic potential. Co-electroporation of the different aberrant alleles and varying amounts of wildtype TSC1 surprisingly revealed already minimal amounts of functional hamartin to be sufficient for phenotype rescue. This result strongly calls for further studies to unravel new mechanisms for substantial silencing of the second allele in cortical tubers, as proposed by Knudson's '2-hit hypothesis'. The rescuing effects may provide a promising basis for gene therapies aiming at reconstituting hamartin expression in tubers.


Asunto(s)
Encéfalo/metabolismo , Mutación/genética , Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Proteínas Represoras/genética , Convulsiones/genética , Convulsiones/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
19.
Proc Natl Acad Sci U S A ; 108(27): 11256-61, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21690345

RESUMEN

Brain aging is associated with cognitive decline that is accompanied by progressive neuroinflammatory changes. The endocannabinoid system (ECS) is involved in the regulation of glial activity and influences the progression of age-related learning and memory deficits. Mice lacking the Cnr1 gene (Cnr1(-/-)), which encodes the cannabinoid receptor 1 (CB1), showed an accelerated age-dependent deficit in spatial learning accompanied by a loss of principal neurons in the hippocampus. The age-dependent decrease in neuronal numbers in Cnr1(-/-) mice was not related to decreased neurogenesis or to epileptic seizures. However, enhanced neuroinflammation characterized by an increased density of astrocytes and activated microglia as well as an enhanced expression of the inflammatory cytokine IL-6 during aging was present in the hippocampus of Cnr1(-/-) mice. The ongoing process of pyramidal cell degeneration and neuroinflammation can exacerbate each other and both contribute to the cognitive deficits. Deletion of CB1 receptors from the forebrain GABAergic, but not from the glutamatergic neurons, led to a similar neuronal loss and increased neuroinflammation in the hippocampus as observed in animals lacking CB1 receptors in all cells. Our results suggest that CB1 receptor activity on hippocampal GABAergic neurons protects against age-dependent cognitive decline by reducing pyramidal cell degeneration and neuroinflammation.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Receptor Cannabinoide CB1/fisiología , Animales , Encéfalo/citología , Recuento de Células , Femenino , Expresión Génica , Hipocampo/citología , Hipocampo/fisiología , Interleucina-6/genética , Interleucina-6/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/fisiología , Neuroglía/citología , Neuroglía/fisiología , Neuronas/citología , Neuronas/fisiología , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/genética , Convulsiones/patología , Convulsiones/fisiopatología , Ácido gamma-Aminobutírico/fisiología
20.
Seizure ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38918105

RESUMEN

The aim of the present study was to review the current knowledge on the neuropathological spectrum of late onset epilepsies. Several terms including 'neuropathology*' AND 'late onset epilepsy' (LOE) combined with distinct neuropathological diagnostic terms were used to search PubMed until November 15, 2023. We report on the relevance of definitional aspects of LOE with implications for the diagnostic spectrum of epilepsies. The neuropathological spectrum in patients with LOE is described and includes vascular lesions, low-grade neuroepithelial neoplasms and focal cortical dysplasias (FCD). Among the latter, the frequency of the FCD subtypes appears to differ between LOE patients and those with seizure onset at a younger age. Neurodegenerative neuropathological changes in the seizure foci of LOE patients require careful interdisciplinary interpretation with respect to the differential diagnosis of primary neurodegenerative changes or epilepsy-related changes. Innate and adaptive neuroinflammation represents an important cause of LOE with intriguing therapeutic options.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA