Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Bioorg Med Chem Lett ; 25(21): 4812-4819, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26195137

RESUMEN

The IC50 of a beta-secretase (BACE-1) lead compound was improved ∼200-fold from 11 µM to 55 nM through the addition of a single methyl group. Computational chemistry, small molecule NMR, and protein crystallography capabilities were used to compare the solution conformation of the ligand under varying pH conditions to its conformation when bound in the active site. Chemical modification then explored available binding pockets adjacent to the ligand. A strategically placed methyl group not only maintained the required pKa of the piperidine nitrogen and filled a small hydrophobic pocket, but more importantly, stabilized the conformation best suited for optimized binding to the receptor.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Hidantoínas/química , Hidantoínas/farmacología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Hidantoínas/síntesis química , Metilación , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
2.
J Pharm Biomed Anal ; 35(4): 779-88, 2004 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-15193722

RESUMEN

The purpose of this study was to qualitatively and quantitatively determine potential cellulose acetate butyrate (CAB) extractables in a way to meaningfully predict the in vivo exposure resulting from clinical administration. Extractions of CAB-381-20 were performed in several solvent systems, consistently resulting in the detection of three extractables. The extractables have been identified as acetic acid, butyric acid, and E-2-ethyl-2-hexenoic acid (E-EHA) by LC/UV, LC/MS and NMR. Extraction studies of CAB powders in acetonitrile/phosphate buffer demonstrated quantitative extraction in 1 h for acetic acid (approximately 150 microg/g), butyric acid (approximately 200 microg/g), and EHA (approximately 20 microg/g). Subsequently, extraction studies for CAB powders and coated tablets in USP simulated gastric and intestinal fluids were performed to evaluate potential in vivo exposure. Similarly, acetic and butyric acids were quantitatively extracted from CAB-381-20 powder after 24 h exposure in both USP simulated fluids. The amounts of EHA extracted from CAB powder after 24 h were determined to be 2 and 16 microg/g in USP simulated gastric and intestinal fluids, respectively. After 24 h exposure in USP simulated fluids, the maximum amount of EHA extracted corresponds to < 0.3 microg of EHA per tablet. Pepsin and pancreatin in USP simulated fluids had no effect on EHA extraction and quantitation.


Asunto(s)
Celulosa/análogos & derivados , Celulosa/química , Celulosa/aislamiento & purificación , Estadística como Asunto
3.
Pharm Res ; 22(10): 1716-26, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16180130

RESUMEN

PURPOSE: The rapid oxidation of rofecoxib under alkaline conditions has been previously reported. The oxidation was reported to involve gamma-lactone ring opening to an alcohol, which further oxidized to a dicarboxyclic acid. The oxidation was suspected to be mediated by peroxy radicals. This work further investigates the mechanism of oxidation under the alkaline solution conditions. METHODS: The pH dependence of the oxidation reaction was determined in 50% acetonitrile/50% aqueous phosphate buffer (pH 9-12). The oxidation reaction products were also examined at early timepoints (from 40 s to several minutes) with only 5% water content. The evolution of hydrogen peroxide by the oxidation reaction was quantitatively followed by reaction with triphenylphosphine (TPP) and high-pressure liquid chromatography determination of the resultant triphenylphosphine oxideformed. Rofecoxib was exposed to the alkaline pH conditions in the presence of formaldehyde, and the primary reaction product was isolated and characterized by liquid chromatography-mass spectrometry and proton 1D, heteronuclear multiple quantum coherence (HMQC), gradient heteronuclear multiple bond correlation (gHMBC), and carbon 1D nuclear magnetic resonance techniques. Transient reaction products were examined for hydroperoxide groups by reaction with TPP. RESULTS: The oxidation reaction occurs only near pH 11 and above. In the presence of excess formaldehyde, oxidation products are no longer observed but a new product is observed in which two formaldehyde molecules have added to the methylene carbon atom of the gamma-lactone ring. The evolution of hydrogen peroxide corresponds quantitatively to the molar amount of the (minor) aldehyde oxidation product formed. It is demonstrated that the rofecoxib anhydride species is actually the primary product of the oxidation reaction. The existence of a transient hydroperoxide species is shown by reaction with TPP and concomitant conversion to a previously identified alcohol. CONCLUSIONS: The oxidation of rofecoxib under these high pH conditions is mediated by rofecoxib enolate ion formation. The enolate ion reacts with either formaldehyde or dissolved oxygen at the C5 position. In the case of oxygen, a transient hydroperoxide species is formed. The major and minor products of the oxidation derive from competitive routes of decomposition of this hydroperoxide. The major route involves a second enolate ion formation, which decomposes with heterolytic cleavage of the RO-OH bond to give the rofeocoxib anhydride and hydroxide ion. The anhydride is rapidly hydrolyzed under the alkaline conditions to give the observed rofecoxib dicarboxylate product. The minor hydroxy-furanone product is formed from hydroxide ion attack on the hydroperoxide intermediate.


Asunto(s)
Álcalis/química , Lactonas/química , Sulfonas/química , Estabilidad de Medicamentos , Furanos/química , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Lactonas/metabolismo , Oxidación-Reducción , Soluciones , Sulfonas/metabolismo , Factores de Tiempo
4.
Drug Metab Dispos ; 31(11): 1437-47, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14570777

RESUMEN

Thrombin is a serine protease that plays a key role in the blood coagulation cascade. Compound I [2-[6-chloro-3-[(2,2-difluoro-2-pyridin-2-ylethyl)amino]-2-oxopyrazin-1(2H)-yl]-N-[(3-fluoropyridin-2-yl)methyl]acetamide] is a potent, selective, and orally bioavailable thrombin inhibitor that is being studied as a possible anticoagulant. Biotransformation studies in rats revealed that 84% of an i.v. dose of I was excreted in the form of two metabolites. Both metabolites were formed by metabolic activation of the pyrazinone ring in I and subsequent rearrangement leading to two novel dihydro-imidazole and imidazolidine derivatives. The structures of these metabolites and their mechanism of formation were elucidated by additional use of two 13C single labels in the pyrazinone ring of I in combination with mass spectrometry and NMR techniques. The metabolite structures described here illustrate the rich metabolic chemistry of the amino-pyrazinone heterocycle.


Asunto(s)
Fibrinolíticos/metabolismo , Imidazoles/metabolismo , Pirazinas/metabolismo , Animales , Bilis/química , Bilis/metabolismo , Biotransformación , Isótopos de Carbono/metabolismo , Fibrinolíticos/análisis , Fibrinolíticos/química , Imidazoles/análisis , Imidazoles/química , Espectroscopía de Resonancia Magnética/métodos , Masculino , Pirazinas/análisis , Pirazinas/química , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa de Ion Secundario/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA