Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 135(41): 15609-16, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24093537

RESUMEN

Dendronized block copolymers were synthesized by ruthenium-mediated ring-opening methathesis polymerization of exo-norbornene functionalized dendrimer monomers, and their self-assembly to dielectric mirrors was investigated. The rigid-rod main-chain conformation of these polymers drastically lowers the energetic barrier for reorganization, enabling their rapid self-assembly to long-range, highly ordered nanostructures. The high fidelity of these dielectric mirrors is attributed to the uniform polymer architecture achieved from the construction of discrete dendritic repeat units. These materials exhibit light-reflecting properties due to the multilayer architecture, presenting an attractive bottom-up approach to efficient dielectric mirrors with narrow band gaps. The wavelength of reflectance scales linearly with block-copolymer molecular weight, ranging from the ultraviolet, through the visible, to the near-infrared. This allows for the modulation of photonic properties through synthetic control of the polymer molecular weight. This work represents a significant advancement in closing the gap between the precision obtained from top-down and bottom-up approaches.

2.
J Am Chem Soc ; 134(34): 14249-54, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22891697

RESUMEN

The synthesis of rigid-rod, helical isocyanate-based macromonomers was achieved through the polymerization of hexyl isocyanate and 4-phenylbutyl isocyanate, initiated by an exo-norbornene functionalized half-titanocene complex. Sequential ruthenium-mediated ring-opening metathesis polymerization of these macromonomers readily afforded well-defined brush block copolymers, with precisely tunable molecular weights ranging from high (1512 kDa) to ultrahigh (7119 kDa), while maintaining narrow molecular weight distributions (PDI = 1.08-1.39). The self-assembly of these brush block copolymers to solid thin-films and their photonic properties were investigated. Due to the rigid architecture of these novel polymeric materials, they rapidly self-assemble through simple controlled evaporation to photonic crystal materials that reflect light from the ultra-violet, through the visible, to the near-infrared. The wavelength of reflectance is linearly related to the brush block copolymer molecular weight, allowing for predictable tuning of the band gap through synthetic control of the polymer molecular weight. A combination of scanning electron microscopy and optical modeling was employed to explain the origin of reflectivity.

3.
Angew Chem Int Ed Engl ; 51(45): 11246-8, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-22976479

RESUMEN

Colorful: enabled by their reduced capacity for chain entanglement, high-molecular-weight brush block copolymers can rapidly self-assemble to photonic crystals. The blending of two polymers of different molecular weight can predictably modulate the sizes of the polymer domains, giving rise to a facile means of precision tuning of these photonic-band-gap materials.

4.
Adv Mater ; 34(24): e2109764, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35390209

RESUMEN

Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered "gold-standard" device coatings to reduce biofouling. To discover novel anti-biofouling materials, a combinatorial library of polyacrylamide-based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet-rich plasma in a high-throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti-biofouling properties over current gold-standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti-biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small-molecule drug in vivo better than gold-standard coatings. The novel methodology described enables the discovery of anti-biofouling materials that can extend the lifetime of real-time in vivo sensing devices.


Asunto(s)
Incrustaciones Biológicas , Técnicas Biosensibles , Resinas Acrílicas , Incrustaciones Biológicas/prevención & control , Hidrogeles/química , Polímeros/química , Prótesis e Implantes , Propiedades de Superficie
5.
J Phys Chem Lett ; 9(21): 6232-6237, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30336037

RESUMEN

Assembly from ultrasmall solution droplets follows a different dynamic from that of larger scales. Using an independently controlled microfluidic probe in an atomic force microscope, subfemtoliter aqueous droplets containing polymers produce well-defined features with dimensions as small as tens of nanometers. The initial shape of the droplet and the concentration of solute within the droplet play significant roles in the final assembly of polymers due to the ultrafast evaporation rate and spatial confinement by the small droplets. These effects are used to control the final molecular assembly in terms of feature geometry and distribution and packing of individual molecules within the features. This work introduces new means of control over molecular assembly, bringing us closer to programmable synthesis for chemistry and materials science. The outcomes pave the way for three-dimensional (3D) nanoprinting in additive manufacturing.

6.
J Phys Chem B ; 122(21): 5356-5367, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29385796

RESUMEN

We present an all-atom molecular dynamics study of the effect of a range of organic solvents (dichloromethane, diethyl ether, toluene, methanol, dimethyl sulfoxide, and tetrahydrofuran) on the conformations of a nanogel star polymeric nanoparticle with solvophobic and solvophilic structural elements. These nanoparticles are of particular interest for drug delivery applications. As drug loading generally takes place in an organic solvent, this work serves to provide insight into the factors controlling the early steps of that process. Our work suggests that nanoparticle conformational structure is highly sensitive to the choice of solvent, providing avenues for further study as well as predictions for both computational and experimental explorations of the drug-loading process. Our findings suggest that when used in the drug-loading process, dichloromethane, tetrahydrofuran, and toluene allow for a more extensive and increased drug-loading into the interior of nanogel star polymers of the composition studied here. In contrast, methanol is more likely to support shallow or surface loading and, consequently, faster drug release rates. Finally, diethyl ether should not work in a formulation process since none of the regions of the nanogel star polymer appear to be sufficiently solvated by it.


Asunto(s)
Portadores de Fármacos/química , Preparaciones Farmacéuticas/química , Polietilenglicoles/química , Polietileneimina/química , Polímeros/química , Solventes/química , Liberación de Fármacos , Nanogeles , Nanopartículas/química , Preparaciones Farmacéuticas/metabolismo
7.
Macromolecules ; 50(24): 9702-9712, 2017 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-32636533

RESUMEN

Star polymers with a cross-linked nanogel core are promising carriers of cargo for therapeutic applications due to the synthetic control of amphiphilicity of arms and stability at infinite dilution. Three nanogel-core star polymers were investigated to understand how the arm-block chemical structure controls loading efficiency of a model drug, ibuprofen, and its spatial distribution. The spatial distribution profiles of hydrophobic core, hydrophilic corona, and encapsulated drug were determined by small-angle neutron scattering (SANS). SANS provides the nanometer-scale sensitivity to determine how the arm-block chemistry enhances the sequestering of ibuprofen. Validated molecular dynamics simulations capture the trends in drug profile and polymer segment distribution with further details on drug orientation distribution. This work provides a basis to study structure-function relationships in macromolecular-based carriers of cargo and represents a path toward validated and predictive simulation.

8.
J Phys Chem B ; 121(13): 2902-2918, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28290691

RESUMEN

We present a molecular dynamics study of the effect of core chemistry on star polymer structural and kinetic properties. This work serves to validate the choice of a model adamantane core used in previous simulations to represent larger star polymeric systems in an aqueous environment, as well as to explore how the choice of size and core chemistry using a dendrimer or nanogel core may affect these polymeric nanoparticle systems, particularly with respect to thermosensitivity and solvation properties that are relevant for applications in drug loading and delivery.


Asunto(s)
Simulación de Dinámica Molecular , Polímeros/química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Estructura Molecular , Nanopartículas/química , Temperatura
9.
J Phys Chem B ; 120(30): 7546-68, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27385087

RESUMEN

To develop a detailed picture of the microscopic structure of gelcore star polymers and to elucidate parameters of the synthetic process that might be exploited to control this structure, simulations of their synthesis were performed that were based on a particular synthetic approach. A range of results was observed from gelation at high reactant concentrations to the formation of various sizes and compositions of star polymers. Contrary to the prevailing experimental viewpoint, the simulations always suggest the production of a broad distribution of star polymer sizes. However, the GPC traces computed from simulation results are in good qualitative agreement with experiment. Topologically, the gelcore star polymers produced by simulation are not compact but, rather, sparse blobs loosely connected by filaments of linker when modeled in a good solvent. This is reflected in scaling relationships that relate polymer size (e.g., radius of gyration) and degree of polymerization. The arm-core composition is observed to be stoichiometric, strongly reflecting relative reactant concentrations during the synthesis. Reactions within star polymers that result in greater intramolecular cross-linking compete with those between star polymers that result in the production of larger star polymers from the joining of smaller ones. The balance in this competition can be controlled through the overall reactant concentration to limit and control resulting star polymer size. Therefore, the mean size, as well as the mean number of arms, can be controlled during synthesis by careful tuning of the overall ratio of the arm and linker reactant concentrations and the total reactant concentration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA