Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Neurophysiol ; 120(3): 1374-1385, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29947589

RESUMEN

Following inflammation or injury, sensory neurons located in the dorsal root ganglia (DRG) may exhibit increased spontaneous and/or stimulus-evoked activity, contributing to chronic pain. Current treatment options for peripherally mediated chronic pain are highly limited, driving the development of cell- or tissue-based phenotypic (function-based) screening assays for peripheral analgesic and mechanistic lead discovery. Extant assays are often limited by throughput, content, use of tumorigenic cell lines, or tissue sources from immature developmental stages (i.e., embryonic or postnatal). Here, we describe a protocol for culturing adult mouse DRG neurons on substrate-integrated multiwell microelectrode arrays (MEAs). This approach enables multiplexed measurements of spontaneous as well as stimulus-evoked extracellular action potentials from large populations of cells. The DRG cultures exhibit stable spontaneous activity from 9 to 21 days in vitro. Activity is readily evoked by known chemical and physical agonists of sensory neuron activity such as capsaicin, bradykinin, PGE2, heat, and electrical field stimulation. Most importantly, we demonstrate that both spontaneous and stimulus-evoked activity may be potentiated by incubation with the inflammatory cytokine interleukin-6 (IL-6). Acute responsiveness to IL-6 is inhibited by treatment with a MAPK-interacting kinase 1/2 inhibitor, cercosporamide. In total, these findings suggest that adult mouse DRG neurons on multiwell MEAs are applicable to ongoing efforts to discover peripheral analgesic and their mechanisms of action. NEW & NOTEWORTHY This work describes methodologies for culturing spontaneously active adult mouse dorsal root ganglia (DRG) sensory neurons on microelectrode arrays. We characterize spontaneous and stimulus-evoked adult DRG activity over durations consistent with pharmacological interventions. Furthermore, persistent hyperexcitability could be induced by incubation with inflammatory cytokine IL-6 and attenuated with cercosporamide, an inhibitor of the IL-6 sensitization pathway. This constitutes a more physiologically relevant, moderate-throughput in vitro model for peripheral analgesic screening as well as mechanistic lead discovery.


Asunto(s)
Potenciales de Acción , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Ganglios Espinales/fisiología , Interleucina-6/farmacología , Células Receptoras Sensoriales/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Bradiquinina/farmacología , Capsaicina/farmacología , Células Cultivadas , Dinoprostona/farmacología , Estimulación Eléctrica , Ganglios Espinales/efectos de los fármacos , Calor , Inflamación/fisiopatología , Mediadores de Inflamación/farmacología , Masculino , Ratones , Microelectrodos , Nociceptores/efectos de los fármacos , Nociceptores/fisiología , Células Receptoras Sensoriales/efectos de los fármacos
2.
Biosens Bioelectron ; 126: 679-689, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30544081

RESUMEN

The tolerance, abuse, and potential exacerbation associated with classical chronic pain medications such as opioids creates a need for alternative therapeutics. Phenotypic screening provides a complementary approach to traditional target-based drug discovery. Profiling cellular phenotypes enables quantification of physiologically relevant traits central to a disease pathology without prior identification of a specific drug target. For complex disorders such as chronic pain, which likely involves many molecular targets, this approach may identify novel treatments. Sensory neurons, termed nociceptors, are derived from dorsal root ganglia (DRG) and can undergo changes in membrane excitability during chronic pain. In this review, we describe phenotypic screening paradigms that make use of nociceptor electrophysiology. The purpose of this paper is to review the bioelectrical behavior of DRG neurons, signaling complexity in sensory neurons, various sensory neuron models, assays for bioelectrical behavior, and emerging efforts to leverage microfabrication and microfluidics for assay development. We discuss limitations and advantages of these various approaches and offer perspectives on opportunities for future development.


Asunto(s)
Técnicas Biosensibles , Descubrimiento de Drogas/tendencias , Ganglios Espinales/efectos de los fármacos , Nociceptores/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Fenómenos Electrofisiológicos , Ganglios Espinales/fisiopatología , Humanos , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA