Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38175515

RESUMEN

Liquid byproducts and organic wastes generated from dairy processing units contribute as the largest source of industrial food wastewater. Though bacteria-mediated treatment strategies are largely implemented, a more effective and innovative management system is needed of the hour. Thus, the current study involves the cultivation of centric diatoms, Chaetoceros gracilis, and Thalassiosira weissflogii in simulated dairy wastewater (SDWW) formulated using varying amounts of milk powder with artificial seawater f/2 media (ASW). The results revealed that cell density and biomass productivity were highest in the 2.5% SDWW treatment cultures of both the strains, the maximum being in C. gracilis (7.5 × 106 cells mL - 1; 21.1 mg L-1 day-1). Conversely, the total carotenoid, chrysolaminarin, and phenol content were negatively impacted by SDWW. However, a considerable enhancement in the total lipid content was reported in the 2.5% SDWW culture of both species. Furthermore, the fatty acid profiling revealed that though the total polyunsaturated fatty acid (PUFA) content was highest in the control setups, the total mono polyunsaturated fatty acid (MUFA) content was higher in the 5% SDWW setups (30.66% in C. gracilis and 33.21% in T. weissflogii). In addition to it, in the cultures utilizing energy from external carbon sources provided by SDWW, the biodiesel produced was also enhanced owing to the heightened cetane number. Thus, the current study evidently highlights the organic carbon acquisition potential of marine diatoms with the scope of providing sustainable biorefinery.

2.
Heliyon ; 9(11): e21192, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37928019

RESUMEN

Fatty acid profiles of 14 Linum species was determined by GC-MS analysis to study the nutritional quality of Linum species based on fatty acid composition, lipid health indices, and chemometric approaches. L. lewisii and L. marginale found to have the highest content of ALA i.e., 65.38 % and 62.79 %, respectively, L. tenuifolium recorded the highest linoleic acid content (69.69 %), while, L. catharticum recorded highest oleic acid (27.03 %). Health indices viz. polyunsaturated fatty acids/saturated fatty acids ratio, n-6/n-3 fatty acids ratio, atherogenicity, thrombogenicity, oxidability, oxidative stability, hypocholesterolemic/hypercholesterolemic fatty acids, and peroxidisability calculated based on the fatty acid composition revealed that all the linseed species except L. aristatum, L. tenuifolium and L. hudsoniodes have healthy fatty acid composition. L. lewisii clearly emerges as a promising species followed by L. bienne with great values across multiple indices, making them as a potential candidate for dietary or nutritional interests. The lipid profile of Linum species could be well distinguished by two principal components by Principal Component Analysis (PCA).

3.
3 Biotech ; 12(10): 255, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36065422

RESUMEN

Lignans have long been known for their abundant therapeutic properties due to their polyphenolic structure. Linseed is the richest plant source of lignans and has been studied widely for their properties. The most prevalent lignan, secoisolariciresinol diglucoside (SDG), is consumed with linseed and converted into mammalian lignans, enterodiol (END) and enterolactone (ENL), by the gut microbiota. SDG can easily be assessed using HPLC and its deglycosylated form viz secoisolariciresinol can be asses using GC-MS techniques. Variety of extraction and analysis methods has been reported for plant lignans. SDG is known to have therapeutic properties including anti-oxidant, anti-cancerous, anti-inflammatory, modulation of gene expression, anti-diabetic, estrogenic and anti-estrogenic. Despite a large number of bioactivities, strong evidences for the underlying mechanisms for most of the properties are still unknown. SDG is most studied for its anti-cancerous properties. But the use of lignans as anti-carcinogenic agent is limited and commercially not reported due to challenges of purification at commercial level, rapid metabolism, untargeted delivery and toxic compounds associated with lignans. Exploration of more prominent and active derivatives of SDG and their targeted drug delivery should be an important research toward the use of bioactive lignans of linseed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA