Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 444(1): 39-49, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22372618

RESUMEN

Alkaline pH stress invokes a potent and fast transcriptional response in Saccharomyces cerevisiae that includes many genes repressed by glucose. Certain mutants in the glucose-sensing and -response pathways, such as those lacking the Snf1 kinase, are sensitive to alkalinization. In the present study we show that the addition of glucose to the medium improves the growth of wild-type cells at high pH, fully abolishes the snf1 alkali-sensitive phenotype and attenuates high pH-induced Snf1 phosphorylation at Thr(210). Lack of Elm1, one of the three upstream Snf1 kinases (Tos3, Elm1 and Sak1), markedly increases alkali sensitivity, whereas the phenotype of the triple mutant tos3 elm1 sak1 is even more pronounced than that of snf1 cells and is poorly rescued by glucose supplementation. DNA microarray analysis reveals that about 75% of the genes induced in the short term by high pH are also induced by glucose scarcity. Snf1 mediates, in full or in part, the activation of a significant subset (38%) of short-term alkali-induced genes, including those encoding high-affinity hexose transporters and phosphorylating enzymes. The induction of genes encoding enzymes involved in glycogen, but not trehalose, metabolism is largely dependent of the presence of Snf1. Therefore the function of Snf1 in adaptation to glucose scarcity appears crucial for alkaline pH tolerance. Incorporation of micromolar amounts of iron and copper to a glucose-supplemented medium resulted in an additive effect and allows near-normal growth at high pH, thus indicating that these three nutrients are key limiting factors for growth in an alkaline environment.


Asunto(s)
Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Adaptación Fisiológica , Cobre/farmacología , Medios de Cultivo , Proteínas de Unión al ADN/metabolismo , Genes Fúngicos , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Hierro/farmacología , Proteínas de Transporte de Monosacáridos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Biochem J ; 438(3): 523-33, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21749328

RESUMEN

Exposure of Saccharomyces cerevisiae to alkaline pH provokes a stress condition that generates a compensatory reaction. In the present study we examined a possible role for the PKA (protein kinase A) pathway in this response. Phenotypic analysis revealed that mutations that activate the PKA pathway (ira1 ira2, bcy1) tend to cause sensitivity to alkaline pH, whereas its deactivation enhances tolerance to this stress. We observed that alkalinization causes a transient decrease in cAMP, the main regulator of the pathway. Alkaline pH causes rapid nuclear localization of the PKA-regulated Msn2 transcription factor which, together with Msn4, mediates a general stress response by binding with STRE (stress response element) sequences in many promoters. Consequently, a synthetic STRE-LacZ reporter shows a rapid induction in response to alkaline stress. A msn2 msn4 mutant is sensitive to alkaline pH, and transcriptomic analysis reveals that after 10 min of alkaline stress, the expression of many induced genes (47%) depends, at least in part, on the presence of Msn2 and Msn4. Taken together, these results demonstrate that inhibition of the PKA pathway by alkaline pH represents a substantial part of the adaptive response to this kind of stress and that this response involves Msn2/Msn4-mediated genome expression remodelling. However, the relevance of attenuation of PKA in high pH tolerance is probably not restricted to regulation of Msn2 function.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , AMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma Fúngico , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
3.
Biochem J ; 426(3): 355-64, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-20028335

RESUMEN

Maintenance of cation homoeostasis is a key process for any living organism. Specific mutations in Glc7, the essential catalytic subunit of yeast protein phosphatase 1, result in salt and alkaline pH sensitivity, suggesting a role for this protein in cation homoeostasis. We screened a collection of Glc7 regulatory subunit mutants for altered tolerance to diverse cations (sodium, lithium and calcium) and alkaline pH. Among 18 candidates, only deletion of REF2 (RNA end formation 2) yielded increased sensitivity to these conditions, as well as to diverse organic toxic cations. The Ref2F374A mutation, which renders it unable to bind Glc7, did not rescue the salt-related phenotypes of the ref2 strain, suggesting that Ref2 function in cation homoeostasis is mediated by Glc7. The ref2 deletion mutant displays a marked decrease in lithium efflux, which can be explained by the inability of these cells to fully induce the Na+-ATPase ENA1 gene. The effect of lack of Ref2 is additive to that of blockage of the calcineurin pathway and might disrupt multiple mechanisms controlling ENA1 expression. ref2 cells display a striking defect in vacuolar morphogenesis, which probably accounts for the increased calcium levels observed under standard growth conditions and the strong calcium sensitivity of this mutant. Remarkably, the evidence collected indicates that the role of Ref2 in cation homoeostasis may be unrelated to its previously identified function in the formation of mRNA via the APT (for associated with Pta1) complex.


Asunto(s)
Cationes/metabolismo , Homeostasis , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Secuencia de Aminoácidos , Calcineurina/genética , Calcineurina/metabolismo , Calcio/metabolismo , Cloruro de Calcio/farmacología , Concentración de Iones de Hidrógeno , Transporte Iónico , Litio/metabolismo , Cloruro de Litio/farmacología , Mutación , Proteína Fosfatasa 1/genética , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sodio/metabolismo , Cloruro de Sodio/farmacología , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
4.
Plant J ; 55(1): 118-30, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18363781

RESUMEN

Protein kinase CK2 is an evolutionary conserved Ser/Thr phosphotransferase composed of two distinct subunits, alpha (catalytic) and beta (regulatory), that combine to form a tetrameric complex. Plant genomes contain multiple genes for each subunit, the expression of which gives rise to different active holoenzymes. In order to study the effects of loss of function of CK2 on plant development, we have undertaken a dominant-negative mutant approach. We generated an inactive catalytic subunit by site-directed mutagenesis of an essential lysine residue. The mutated open reading frame was cloned downstream of an inducible promoter, and stably transformed Arabidopsis thaliana plants and tobacco BY2 cells were isolated. Continuous expression of the CK2 kinase-inactive subunit did not prevent seed germination, but seedlings exhibited a strong phenotype, affecting chloroplast development, cotyledon expansion, and root and shoot growth. Prolonged induction of the transgene was lethal. Moreover, dark-germinated seedlings exhibited an apparent de-etiolated phenotype that was not caused by disruption of the light-signalling pathways. Short-term induction of the CK2 kinase-inactive subunit allowed plant survival, but root growth and lateral root formation were significantly affected. The expression pattern of CYCB1;1::GFP in the root meristems of mutant plants demonstrated an important decrease of mitotic activity, and expression of the CK2 kinase-inactive subunit in stably transformed BY2 cells provoked perturbation of the G1/S and G2 phases of the cell cycle. Our results are consistent with a model in which CK2 plays a key role in cell division and cell expansion, with compelling effects on Arabidopsis development.


Asunto(s)
Arabidopsis/enzimología , Quinasa de la Caseína II/metabolismo , División Celular , Nicotiana/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Quinasa de la Caseína II/genética , Línea Celular , Expresión Génica , Mutagénesis Sitio-Dirigida , Mutación , Sistemas de Lectura Abierta , Plantas Modificadas Genéticamente/enzimología , Regiones Promotoras Genéticas , Nicotiana/genética , Transgenes
5.
J Biol Chem ; 281(48): 36632-42, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17023428

RESUMEN

Adaptive response of the yeast Saccharomyces cerevisiae to environmental alkalinization results in remodeling of gene expression. A key target is the gene ENA1, encoding a Na(+)-ATPase, whose induction by alkaline pH has been shown to involve calcineurin and the Rim101/Nrg1 pathway. Previous functional analysis of the ENA1 promoter revealed a calcineurin-independent pH responsive region (ARR2, 83 nucleotides). We restrict here this response to a small (42 nucleotides) ARR2 5.-region, named MCIR (minimum calcineurin independent response), which contains a MIG element, able to bind Mig1,2 repressors. High pH-induced response driven from this region was largely abolished in snf1 cells and moderately reduced in a rim101 strain. Cells lacking Mig1 or Mig2 repressors had a near wild type response, but the double mutant presented a high level of expression upon alkaline stress. Deletion of NRG1 (but not of NRG2) resulted in increased expression. Induction from the MCIR region was marginal in a quadruple mutant lacking Nrg1,2 and Mig1,2 repressors. In vitro band shift experiments demonstrated binding of Nrg1 to the 5. end of the ARR2 region. Furthermore, we show that Nrg1 binds in vivo around the MCIR region under standard growth conditions, and that binding is largely abolished after high pH stress. Therefore, the calcineurin-independent response of the ENA1 gene is under the regulation of Rim101 (through Nrg1) and Snf1 (through Nrg1 and Mig2). Accordingly, induction by alkaline stress of the entire ENA1 promoter in a snf1 rim101 mutant in the presence of the calcineurin inhibitor FK506 is completely abolished. Thus, the transcriptional response to alkaline stress of the ENA1 gene integrates three different signaling pathways.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/fisiología , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Transcripción Genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Calcineurina/metabolismo , Proteínas de Transporte de Catión/metabolismo , Mapeo Cromosómico , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , ATPasa Intercambiadora de Sodio-Potasio , Tacrolimus/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA