Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1827(6): 699-708, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23416842

RESUMEN

In this study a comparative analysis of three Corynebacterium glutamicum ATCC 13032 respiratory chain mutants lacking either the cytochrome bd branch (ΔcydAB), or the cytochrome bc1-aa3 branch (Δqcr), or both branches was performed. The lack of cytochrome bd oxidase was inhibitory only under conditions of oxygen limitation, whereas the absence of a functional cytochrome bc1-aa3 supercomplex led to decreases in growth rate, biomass yield, respiration and proton-motive force (pmf) and a strongly increased maintenance coefficient under oxygen excess. These results show that the bc1-aa3 supercomplex is of major importance for aerobic respiration. For the first time, a C. glutamicum strain with a completely inactivated aerobic respiratory chain was obtained (ΔcydABΔqcr), named DOOR (devoid of oxygen respiration), which was able to grow aerobically in BHI (brain-heart infusion) glucose complex medium with a 70% reduced biomass yield compared to the wild type. Surprisingly, reasonable aerobic growth was also possible in glucose minimal medium after supplementation with peptone. Under these conditions, the DOOR strain displayed a fermentative type of catabolism with l-lactate as major and acetate and succinate as minor products. The DOOR strain had about 2% of the oxygen consumption rate of the wild type, showing the absence of additional terminal oxidases. The pmf of the DOOR mutant was reduced by about 30% compared to the wild type. Candidates for pmf generation in the DOOR strain are succinate:menaquinone oxidoreductase, which probably can generate pmf in the direction of fumarate reduction, and F1FO-ATP synthase, which can couple ATP hydrolysis to the export of protons.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Transporte de Electrón , Fermentación , Aerobiosis , Corynebacterium glutamicum/crecimiento & desarrollo , Complejo III de Transporte de Electrones/fisiología , Complejo IV de Transporte de Electrones/fisiología , Glucosa/metabolismo , Consumo de Oxígeno , Fuerza Protón-Motriz
2.
Sci Data ; 9(1): 594, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182956

RESUMEN

Corynebacterium glutamicum is the major host for the industrial production of amino acids and has become one of the best studied model organisms in microbial biotechnology. Rational strain construction has led to an improvement of producer strains and to a variety of novel producer strains with a broad substrate and product spectrum. A key factor for the success of these approaches is detailed knowledge of transcriptional regulation in C. glutamicum. Here, we present a large compendium of 927 manually curated microarray-based transcriptional profiles for wild-type and engineered strains detecting genome-wide expression changes of the 3,047 annotated genes in response to various environmental conditions or in response to genetic modifications. The replicates within the 927 experiments were combined to 304 microarray sets ordered into six categories that were used for differential gene expression analysis. Hierarchical clustering confirmed that no outliers were present in the sets. The compendium provides a valuable resource for future fundamental and applied research with C. glutamicum and contributes to a systemic understanding of this microbial cell factory. Measurement(s) Gene Expression Analysis Technology Type(s) Two Color Microarray Factor Type(s) WT condition A vs. WT condition B • Plasmid-based gene overexpression in parental strain vs. parental strain with empty vector control • Deletion mutant vs. parental strain Sample Characteristic - Organism Corynebacterium glutamicum Sample Characteristic - Environment laboratory environment Sample Characteristic - Location Germany.


Asunto(s)
Corynebacterium glutamicum , Aminoácidos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Alemania
3.
FEMS Microbiol Lett ; 350(2): 239-48, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24237595

RESUMEN

The influence of nitrate and nitrite on growth of Corynebacterium glutamicum under aerobic conditions in shake flasks was analysed. When dissolved oxygen became limiting at higher cell densities, nitrate was reduced almost stoichiometrically to nitrite by nitrate reductase (NarGHJI). The nitrite concentration also declined slowly, presumably as a result of several reactions including reduction to nitric oxide by a side-activity of nitrate reductase. The flavohaemoglobin gene hmp was most strongly upregulated (19-fold) in the presence of nitrite. Hmp is known to catalyse the oxygen-dependent oxidation of nitric oxide to nitrate and, in the absence of oxygen, with a much lower rate the reduction of nitric oxide to nitrous oxide. A Δhmp mutant showed strong growth defects under aerobic conditions in the presence of nitrate, nitrite and the NO-donating reagent sodium nitroprusside, but also under anaerobic nitrate-respiring conditions. Therefore, Hmp is likely to be responsible for nitric oxide conversion to either nitrate or nitrous oxide in C. glutamicum. The results suggest that a cyclic nitrate-nitrite conversion takes place in C. glutamicum under microaerobic conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hemoproteínas/metabolismo , Nitrato-Reductasa/metabolismo , Nitritos/metabolismo , Estrés Fisiológico/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/fisiología , Hemoproteínas/química , Hemoproteínas/genética , Mutación , Nitrato-Reductasa/química , Nitrato-Reductasa/genética , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Fenotipo , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA