Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 115: 374-393, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914099

RESUMEN

Neuroinflammation coupled with demyelination and neuro-axonal damage in the central nervous system (CNS) contribute to disease advancement in progressive multiple sclerosis (P-MS). Inflammasome activation accompanied by proteolytic cleavage of gasdermin D (GSDMD) results in cellular hyperactivation and lytic death. Using multiple experimental platforms, we investigated the actions of GSDMD within the CNS and its contributions to P-MS. Brain tissues from persons with P-MS showed significantly increased expression of GSDMD, NINJ1, IL-1ß, and -18 within chronic active demyelinating lesions compared to MS normal appearing white matter and nonMS (control) white matter. Conditioned media (CM) from stimulated GSDMD+/+ human macrophages caused significantly greater cytotoxicity of oligodendroglial and neuronal cells, compared to CM from GSDMD-/- macrophages. Oligodendrocytes and CNS macrophages displayed increased Gsdmd immunoreactivity in the central corpus callosum (CCC) of cuprizone (CPZ)-exposed Gsdmd+/+ mice, associated with greater demyelination and reduced oligodendrocyte precursor cell proliferation, compared to CPZ-exposed Gsdmd-/- animals. CPZ-exposed Gsdmd+/+ mice exhibited significantly increased G-ratios and reduced axonal densities in the CCC compared to CPZ-exposed Gsdmd-/- mice. Proteomic analyses revealed increased brain complement C1q proteins and hexokinases in CPZ-exposed Gsdmd-/- animals. [18F]FDG PET imaging showed increased glucose metabolism in the hippocampus and whole brain with intact neurobehavioral performance in Gsdmd-/- animals after CPZ exposure. GSDMD activation in CNS macrophages and oligodendrocytes contributes to inflammatory demyelination and neuroaxonal injury, offering mechanistic and potential therapeutic insights into P-MS pathogenesis.


Asunto(s)
Gasderminas , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Animales , Humanos , Ratones , Moléculas de Adhesión Celular Neuronal , Cuprizona/uso terapéutico , Cuprizona/toxicidad , Modelos Animales de Enfermedad , Gasderminas/metabolismo , Ratones Endogámicos C57BL , Microglía/patología , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/patología , Factores de Crecimiento Nervioso , Oligodendroglía , Proteómica
2.
Eur J Neurosci ; 57(9): 1481-1497, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36918398

RESUMEN

Social isolation is a profound form of psychological stress that impacts the mental health of a large proportion of society. Other experimental models of stress have demonstrated a microglia response that serves either a protective or pathological function. However, the effect of adult social isolation on microglia has not been thoroughly investigated. We measured microglia territory, branching, end points and phagocytic-lysosomal activity in group housed C57Bl/6 mice and mice that were socially isolated for 2 weeks. Our results show that the dorsomedial hypothalamus and hippocampal CA2 region of adult male mice undergo increased microglia volume, territory and endpoints following social isolation, whereas females exhibit this increase in the hypothalamus only. Males exhibited decreases in the phagocytic-lysosomal marker CD68 in microglia in these regions, whereas females showed an increase in CD68 in the hypothalamus suggesting sexually dimorphic and brain region-specific change in microglia state in response to social isolation. The prefrontal cortex, central amygdala, nucleus accumbens shell and visual cortex did not exhibit changes in microglia structure in either male or female mice. These data show that microglia in different brain regions undergo a distinct response to social isolation which may account for changes in cognition and behaviour associated with this prevalent form of psychological stress.


Asunto(s)
Encéfalo , Microglía , Ratones , Masculino , Femenino , Animales , Microglía/patología , Aislamiento Social , Hipotálamo , Corteza Prefrontal
3.
Nat Rev Neurosci ; 19(1): 49-58, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118449

RESUMEN

It is widely recognized that myelination of axons greatly enhances the speed of signal transmission. An exciting new finding is the dynamic communication between axons and their myelin-forming oligodendrocytes, including activity-dependent signalling from axon to myelin. The oligodendrocyte-myelin complex may in turn respond by providing metabolic support or alter subtle myelin properties to modulate action potential propagation. In this Opinion, we discuss what is known regarding the molecular physiology of this novel, synapse-like communication and speculate on potential roles in disease states including multiple sclerosis, schizophrenia and Alzheimer disease. An emerging appreciation of the contribution of white-matter perturbations to neurological dysfunction identifies the axo-myelinic synapse as a potential novel therapeutic target.


Asunto(s)
Axones/fisiología , Encefalopatías/fisiopatología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Transmisión Sináptica/fisiología , Animales , Sistema Nervioso Central/fisiología , Humanos , Modelos Neurológicos
4.
Brain Behav Immun ; 114: 80-93, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37544463

RESUMEN

Decades of research into chronic pain has deepened our understanding of the cellular mechanisms behind this process. However, a failure to consider the biological variable of sex has limited the application of these breakthroughs into clinical application. In the present study, we investigate fundamental differences in chronic pain between male and female mice resulting from inflammatory activation of the innate immune system. We provide evidence that female mice are more sensitive to the effects of macrophages. Injecting small volumes of media conditioned by either unstimulated macrophages or macrophages stimulated by the inflammatory molecule TNFα lead to increased pain sensitivity only in females. Interestingly, we find that TNFα conditioned media leads to a more rapid resolution of mechanical hypersensitivity and altered immune cell recruitment to sites of injury. Furthermore, male and female macrophages exhibit differential polarization characteristics and motility after TNFα stimulation, as well as a different profile of cytokine secretions. Finally, we find that the X-linked gene Tlr7 is critical in the facilitating the adaptive resolution of pain in models of acute and chronic inflammation in both sexes. Altogether, these findings suggest that although the cellular mechanisms of pain resolution may differ between the sexes, the study of these differences may yield more targeted approaches with clinical applications.

5.
J Neuroinflammation ; 19(1): 45, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35144628

RESUMEN

There are over 15 disease-modifying drugs that have been approved over the last 20 years for the treatment of relapsing-remitting multiple sclerosis (MS), but there are limited treatment options available for progressive MS. The development of new drugs for the treatment of progressive MS remains challenging as the pathophysiology of progressive MS is poorly understood.The progressive phase of MS is dominated by neurodegeneration and a heightened innate immune response with trapped immune cells behind a closed blood-brain barrier in the central nervous system. Here we review microglia and border-associated macrophages, which include perivascular, meningeal, and choroid plexus macrophages, during the progressive phase of MS. These cells are vital and are largely the basis to define lesion types in MS. We will review the evidence that reactive microglia and macrophages upregulate pro-inflammatory genes and downregulate homeostatic genes, that may promote neurodegeneration in progressive MS. We will also review the factors that regulate microglia and macrophage function during progressive MS, as well as potential toxic functions of these cells. Disease-modifying drugs that solely target microglia and macrophage in progressive MS are lacking. The recent treatment successes for progressive MS include include B-cell depletion therapies and sphingosine-1-phosphate receptor modulators. We will describe several therapies being evaluated as a potential treatment option for progressive MS, such as immunomodulatory therapies that can target myeloid cells or as a potential neuroprotective agent.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Sistema Nervioso Central/patología , Humanos , Macrófagos/patología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico
6.
Nat Rev Neurosci ; 19(1): 58, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29238086

RESUMEN

This corrects the article DOI: 10.1038/nrn.2017.128.

7.
J Neurosci ; 40(44): 8587-8600, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33060175

RESUMEN

Age is a critical risk factor for many neurologic conditions, including progressive multiple sclerosis. Yet the mechanisms underlying the relationship are unknown. Using lysolecithin-induced demyelinating injury to the mouse spinal cord, we characterized the acute lesion and investigated the mechanisms of increased myelin and axon damage with age. We report exacerbated myelin and axon loss in middle-aged (8-10 months of age) compared with young (6 weeks of age) female C57BL/6 mice by 1-3 d of lesion evolution in the white matter. Transcriptomic analysis linked elevated injury to increased expression of Cybb, the gene encoding the catalytic subunit of NADPH oxidase gp91phox. Immunohistochemistry in male and female Cx3cr1CreER/+:Rosa26tdTom/+ mice for gp91phox revealed that the upregulation in middle-aged animals occurred primarily in microglia and not infiltrated monocyte-derived macrophages. Activated NADPH oxidase generates reactive oxygen species and elevated oxidative damage was corroborated by higher malondialdehyde immunoreactivity in lesions from middle-aged compared with young mice. From a previously conducted screen for generic drugs with antioxidant properties, we selected the antihypertensive CNS-penetrant medication indapamide for investigation. We report that indapamide reduced superoxide derived from microglia cultures and that treatment of middle-aged mice with indapamide was associated with a decrease in age-exacerbated lipid peroxidation, demyelination and axon loss. In summary, age-exacerbated acute injury following lysolecithin administration is mediated in part by microglia NADPH oxidase activation, and this is alleviated by the CNS-penetrant antioxidant, indapamide.SIGNIFICANCE STATEMENT Age is associated with an increased risk for the development of several neurologic conditions including progressive multiple sclerosis, which is represented by substantial microglia activation. We demonstrate that in the lysolecithin demyelination model in young and middle-aged mice, the latter group developed greater acute axonal and myelin loss attributed to elevated oxidative stress through NADPH oxidase in lineage-traced microglia. We thus used a CNS-penetrant generic medication used in hypertension, indapamide, as we found it to have antioxidant properties in a previous drug screen. Following lysolecithin demyelination in middle-aged mice, indapamide treatment was associated with decreased oxidative stress and axon/myelin loss. We propose indapamide as a potential adjunctive therapy in aging-associated neurodegenerative conditions such as Alzheimer's disease and progressive multiple sclerosis.


Asunto(s)
Envejecimiento/fisiología , Antihipertensivos/farmacología , Axones/patología , Indapamida/farmacología , Microglía/metabolismo , Vaina de Mielina/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Medicamentos Genéricos , Femenino , Peroxidación de Lípido/efectos de los fármacos , Macrófagos/fisiología , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2/biosíntesis , NADPH Oxidasa 2/genética , NADPH Oxidasas/metabolismo , Transcriptoma
8.
Glia ; 69(12): 2771-2797, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34115410

RESUMEN

The dynamic expansions and contractions of the microglia population in the central nervous system (CNS) to achieve homeostasis are likely vital for their function. Microglia respond to injury or disease but also help guide neurodevelopment, modulate neural circuitry throughout life, and direct regeneration. Throughout these processes, microglia density changes, as does the volume of area that each microglia surveys. Given that microglia are responsible for sensing subtle alterations to their environment, a change in their density could affect their capacity to mobilize rapidly. In this review, we attempt to synthesize the current literature on the ligands and conditions that promote microglial proliferation across development, adulthood, and neurodegenerative conditions. Microglia display an impressive proliferative capacity during development and in neurodegenerative diseases that is almost completely absent at homeostasis. However, the appropriate function of microglia in each state is critically dependent on density fluctuations that are primarily induced by proliferation. Proliferation is a natural microglial response to insult and often serves neuroprotective functions. In contrast, inappropriate microglial proliferation, whether too much or too little, often precipitates undesirable consequences for nervous system health. Thus, fluctuations in the microglia population are tightly regulated to ensure these immune cells can execute their diverse functions.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Adulto , Sistema Nervioso Central , Homeostasis , Humanos , Microglía/fisiología , Dinámica Poblacional
9.
Proc Natl Acad Sci U S A ; 115(21): 5528-5533, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29728463

RESUMEN

Although immune attack against central nervous system (CNS) myelin is a central feature of multiple sclerosis (MS), its root cause is unresolved. In this report, we provide direct evidence that subtle biochemical modifications to brain myelin elicit pathological immune responses with radiological and histological properties similar to MS lesions. A subtle myelinopathy induced by abbreviated cuprizone treatment, coupled with subsequent immune stimulation, resulted in lesions of inflammatory demyelination. The degree of myelin injury dictated the resulting immune response; biochemical damage that was too limited or too extensive failed to trigger overt pathology. An inhibitor of peptidyl arginine deiminases (PADs), enzymes that alter myelin structure and correlate with MS lesion severity, mitigated pathology even when administered only during the myelin-altering phase. Moreover, cultured splenocytes were reactive against donor myelin isolates, a response that was substantially muted when splenocytes were exposed to myelin from donors treated with PAD inhibitors. By showing that a primary biochemical myelinopathy can trigger secondary pathological inflammation, "cuprizone autoimmune encephalitis" potentially reconciles conflicting theories about MS pathogenesis and provides a strong rationale for investigating myelin as a primary target for early, preventative therapy.


Asunto(s)
Enfermedades Desmielinizantes/etiología , Modelos Animales de Enfermedad , Encefalitis/patología , Enfermedad de Hashimoto/patología , Inflamación/patología , Esclerosis Múltiple/etiología , Vaina de Mielina/patología , Animales , Cuprizona/toxicidad , Enfermedades Desmielinizantes/patología , Encefalitis/inducido químicamente , Encefalitis/inmunología , Enfermedad de Hashimoto/inducido químicamente , Enfermedad de Hashimoto/inmunología , Humanos , Hidrolasas/genética , Hidrolasas/metabolismo , Inflamación/inducido químicamente , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibidores de la Monoaminooxidasa/toxicidad , Esclerosis Múltiple/patología , Vaina de Mielina/inmunología , Vaina de Mielina/metabolismo
10.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884445

RESUMEN

Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system (CNS). Repair through remyelination can be extensive, but quantification of remyelination remains challenging. To date, no method for standardized digital quantification of remyelination of MS lesions exists. This methodological study aims to present and validate a novel standardized method for myelin quantification in progressive MS brains to study myelin content more precisely. Fifty-five MS lesions in 32 tissue blocks from 14 progressive MS cases and five tissue blocks from 5 non-neurological controls were sampled. MS lesions were selected by macroscopic investigation of WM by standard histopathological methods. Tissue sections were stained for myelin with luxol fast blue (LFB) and histological assessment of de- or remyelination was performed by light microscopy. The myelin quantity was estimated with a novel myelin quantification method (MQM) in ImageJ. Three independent raters applied the MQM and the inter-rater reliability was calculated. We extended the method to diffusely appearing white matter (DAWM) and encephalitis to test potential wider applicability of the method. Inter-rater agreement was excellent (ICC = 0.96) and there was a high reliability with a lower- and upper limit of agreement up to -5.93% to 18.43% variation in myelin quantity. This study builds on the established concepts of histopathological semi-quantitative assessment of myelin and adds a novel, reliable and accurate quantitative measurement tool for the assessment of myelination in human post-mortem samples.


Asunto(s)
Esclerosis Múltiple/patología , Vaina de Mielina/metabolismo , Sustancia Blanca/patología , Autopsia , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Microscopía , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/metabolismo , Vaina de Mielina/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo
11.
Glia ; 68(2): 227-245, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31433109

RESUMEN

Oligodendrocyte progenitor cells (OPCs) are the most proliferative and dispersed population of progenitor cells in the adult central nervous system, which allows these cells to rapidly respond to damage. Oligodendrocytes and myelin are lost after traumatic spinal cord injury (SCI), compromising efficient conduction and, potentially, the long-term health of axons. In response, OPCs proliferate and then differentiate into new oligodendrocytes and Schwann cells to remyelinate axons. This culminates in highly efficient remyelination following experimental SCI in which nearly all intact demyelinated axons are remyelinated in rodent models. However, myelin regeneration comprises only one role of OPCs following SCI. OPCs contribute to scar formation after SCI and restrict the regeneration of injured axons. Moreover, OPCs alter their gene expression following demyelination, express cytokines and perpetuate the immune response. Here, we review the functional contribution of myelin regeneration and other recently uncovered roles of OPCs and their progeny to repair following SCI.


Asunto(s)
Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/metabolismo , Remielinización/fisiología , Traumatismos de la Médula Espinal/patología , Animales , Humanos , Vaina de Mielina/metabolismo , Células de Schwann/metabolismo , Traumatismos de la Médula Espinal/metabolismo
12.
Acta Neuropathol ; 139(5): 911, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32211925

RESUMEN

The article Niacin­mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system, written by Khalil S. Rawji, Adam M.H. Young, Tanay Ghosh, Nathan J. Michaels, Reza Mirzaei, Janson Kappen, Kathleen L. Kolehmainen, Nima Alaeiilkhchi, Brian Lozinski, Manoj K. Mishra, Annie Pu, Weiwen Tang, Salma Zein, Deepak K. Kaushik, Michael B. Keough, Jason R. Plemel, Fiona Calvert, Andrew J. Knights, Daniel J. Gaffney, Wolfram Tetzlaff, Robin J. M. Franklin and V. Wee Yong, was originally published electronically on the publisher's internet.

13.
Acta Neuropathol ; 139(5): 893-909, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32030468

RESUMEN

Remyelination following CNS demyelination restores rapid signal propagation and protects axons; however, its efficiency declines with increasing age. Both intrinsic changes in the oligodendrocyte progenitor cell population and extrinsic factors in the lesion microenvironment of older subjects contribute to this decline. Microglia and monocyte-derived macrophages are critical for successful remyelination, releasing growth factors and clearing inhibitory myelin debris. Several studies have implicated delayed recruitment of macrophages/microglia into lesions as a key contributor to the decline in remyelination observed in older subjects. Here we show that the decreased expression of the scavenger receptor CD36 of aging mouse microglia and human microglia in culture underlies their reduced phagocytic activity. Overexpression of CD36 in cultured microglia rescues the deficit in phagocytosis of myelin debris. By screening for clinically approved agents that stimulate macrophages/microglia, we have found that niacin (vitamin B3) upregulates CD36 expression and enhances myelin phagocytosis by microglia in culture. This increase in myelin phagocytosis is mediated through the niacin receptor (hydroxycarboxylic acid receptor 2). Genetic fate mapping and multiphoton live imaging show that systemic treatment of 9-12-month-old demyelinated mice with therapeutically relevant doses of niacin promotes myelin debris clearance in lesions by both peripherally derived macrophages and microglia. This is accompanied by enhancement of oligodendrocyte progenitor cell numbers and by improved remyelination in the treated mice. Niacin represents a safe and translationally amenable regenerative therapy for chronic demyelinating diseases such as multiple sclerosis.


Asunto(s)
Envejecimiento/fisiología , Macrófagos/patología , Microglía/metabolismo , Niacina/metabolismo , Rejuvenecimiento/fisiología , Remielinización/fisiología , Animales , Axones/patología , Enfermedades Desmielinizantes/patología , Humanos , Ratones Transgénicos , Microglía/patología , Esclerosis Múltiple/patología , Fagocitosis/fisiología
14.
J Neurosci ; 38(8): 1973-1988, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29363580

RESUMEN

Aging impairs regenerative processes including remyelination, the synthesis of a new myelin sheath. Microglia and other infiltrating myeloid cells such as macrophages are essential for remyelination through mechanisms that include the clearance of inhibitory molecules within the lesion. Prior studies have shown that the quantity of myeloid cells and the clearance of inhibitory myelin debris are deficient in aging, contributing to the decline in remyelination efficiency with senescence. It is unknown, however, whether the impaired clearance of debris is simply the result of the reduced number of phagocytes or if the dynamic activity of myeloid cells within the demyelinating plaque also declines with aging and this question is relevant to the proper design of therapeutics to mobilize myeloid cells for repair. Herein, we describe a high-resolution multiphoton ex vivo live imaging protocol that visualizes individual myelinated/demyelinated axons and lipid-containing myeloid cells to investigate the demyelinated lesion of aging female mice. We found that aging lesions have fewer myeloid cells and that these have reduced phagocytosis of myelin. Although the myeloid cells are actively migratory within the lesion of young mice and have protrusions that seem to survey the environment, this motility and surveillance is significantly reduced in aging mice. Our results emphasize the necessity of not only increasing the number of phagocytes, but also enhancing their activity once they are within demyelinated lesions. The high-resolution live imaging of demyelinated lesions can serve as a platform with which to discover pharmacological agents that rejuvenate intralesional remodeling that promotes the repair of plaques.SIGNIFICANCE STATEMENT The repair of myelin after injury depends on myeloid cells that clear debris and release growth factors. As organisms age, remyelination becomes less efficient correspondent with fewer myeloid cells that populate the lesions. It is unknown whether the dynamic activity of cells within lesions is also altered with age. Herein, using high-resolution multiphoton ex vivo live imaging with several novel features, we report that myeloid cells within demyelinated lesions of aging mice have reduced motility, surveillance, and phagocytic activity, suggesting an intralesional impairment that may contribute to the age-related decline in remyelination efficiency. Medications to stimulate deficient aging myeloid cells should not only increase their representation, but also enter into lesions to stimulate their activity.


Asunto(s)
Envejecimiento/patología , Enfermedades Desmielinizantes/patología , Vaina de Mielina/patología , Células Mieloides/patología , Animales , Femenino , Ratones , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Vaina de Mielina/metabolismo , Células Mieloides/metabolismo , Fagocitos/metabolismo , Fagocitos/patología , Fagocitosis/fisiología
15.
J Neurosci ; 37(36): 8635-8654, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28760862

RESUMEN

Spontaneous remyelination occurs after spinal cord injury (SCI), but the extent of myelin repair and identity of the cells responsible remain incompletely understood and contentious. We assessed the cellular origin of new myelin by fate mapping platelet-derived growth factor receptor α (PDGFRα), Olig2+, and P0+ cells following contusion SCI in mice. Oligodendrocyte precursor cells (OPCs; PDGFRα+) produced oligodendrocytes responsible for de novo ensheathment of ∼30% of myelinated spinal axons at injury epicenter 3 months after SCI, demonstrating that these resident cells are a major contributor to oligodendrocyte regeneration. OPCs also produced the majority of myelinating Schwann cells in the injured spinal cord; invasion of peripheral myelinating (P0+) Schwann cells made only a limited contribution. These findings reveal that PDGFRα+ cells perform diverse roles in CNS repair, as multipotential progenitors that generate both classes of myelinating cells. This endogenous repair might be exploited as a therapeutic target for CNS trauma and disease.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to profound functional deficits, though substantial numbers of axons often survive. One possible explanation for these deficits is loss of myelin, creating conduction block at the site of injury. SCI leads to oligodendrocyte death and demyelination, and clinical trials have tested glial transplants to promote myelin repair. However, the degree and duration of myelin loss, and the extent and mechanisms of endogenous repair, have been contentious issues. Here, we use genetic fate mapping to demonstrate that spontaneous myelin repair by endogenous oligodendrocyte precursors is much more robust than previously recognized. These findings are relevant to many types of CNS pathology, raising the possibility that CNS precursors could be manipulated to repair myelin in lieu of glial transplantation.


Asunto(s)
Vaina de Mielina/patología , Regeneración Nerviosa/fisiología , Células-Madre Neurales/patología , Plasticidad Neuronal , Oligodendroglía/fisiología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Masculino , Ratones
16.
Glia ; 66(2): 327-347, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29068088

RESUMEN

For decades lysophosphatidylcholine (LPC, lysolecithin) has been used to induce demyelination, without a clear understanding of its mechanisms. LPC is an endogenous lysophospholipid so it may cause demyelination in certain diseases. We investigated whether known receptor systems, inflammation or nonspecific lipid disruption mediates LPC-demyelination in mice. We found that LPC nonspecifically disrupted myelin lipids. LPC integrated into cellular membranes and rapidly induced cell membrane permeability; in mice, LPC injury was phenocopied by other lipid disrupting agents. Interestingly, following its injection into white matter, LPC was cleared within 24 hr but by five days there was an elevation of endogenous LPC that was not associated with damage. This elevation of LPC in the absence of injury raises the possibility that the brain has mechanisms to buffer LPC. In support, LPC injury in culture was significantly ameliorated by albumin buffering. These results shed light on the mechanisms of LPC injury and homeostasis.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/toxicidad , Lípidos de la Membrana/metabolismo , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Animales , Células Cultivadas , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Femenino , Inyecciones Intraventriculares , Lisofosfatidilcolinas/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
17.
Acta Neuropathol ; 134(3): 403-422, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28631093

RESUMEN

Remyelination is limited in the majority of multiple sclerosis (MS) lesions despite the presence of oligodendrocyte precursor cells (OPCs) in most lesions. This observation has led to the view that a failure of OPCs to fully differentiate underlies remyelination failure. OPC differentiation requires intricate transcriptional regulation, which may be disrupted in chronic MS lesions. The expression of few transcription factors has been differentially compared between remyelinating lesions and lesions refractory to remyelination. In particular, the oligodendrocyte transcription factor myelin regulatory factor (MYRF) is essential for myelination during development, but its role during remyelination and expression in MS lesions is unknown. To understand the role of MYRF during remyelination, we genetically fate mapped OPCs following lysolecithin-induced demyelination of the corpus callosum in mice and determined that MYRF is expressed in new oligodendrocytes. OPC-specific Myrf deletion did not alter recruitment or proliferation of these cells after demyelination, but decreased the density of new glutathione S-transferase π positive oligodendrocytes. Subsequent remyelination in both the spinal cord and corpus callosum is highly impaired following Myrf deletion from OPCs. Individual OPC-derived oligodendrocytes, produced in response to demyelination, showed little capacity to express myelin proteins following Myrf deletion. Collectively, these data demonstrate a crucial role of MYRF in the transition of oligodendrocytes from a premyelinating to a myelinating phenotype during remyelination. In the human brain, we find that MYRF is expressed in NogoA and CNP-positive oligodendrocytes. In MS, there was both a lower density and proportion of oligodendrocyte lineage cells and NogoA+ oligodendrocytes expressing MYRF in chronically demyelinated lesions compared to remyelinated shadow plaques. The relative scarcity of oligodendrocyte lineage cells expressing MYRF in demyelinated MS lesions demonstrates, for the first time, that chronic lesions lack oligodendrocytes that express this necessary transcription factor for remyelination and supports the notion that a failure to fully differentiate underlies remyelination failure.


Asunto(s)
Cuerpo Calloso/metabolismo , Esclerosis Múltiple/metabolismo , Oligodendroglía/metabolismo , Remielinización/fisiología , Factores de Transcripción/metabolismo , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Animales , Cuerpo Calloso/patología , Humanos , Ratones , Ratones Noqueados , Esclerosis Múltiple/patología , Proteínas Nogo/metabolismo , Oligodendroglía/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Factores de Transcripción/genética
18.
Mult Scler ; 21(12): 1485-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26286700

RESUMEN

BACKGROUND: Anti-oxidant compounds that are found in over-the-counter (OTC) supplements and foods are gaining interest as treatments for multiple sclerosis (MS). They are widely used by patients, sometimes without a clear evidence base. OBJECTIVE: We conducted a systematic review of animal and clinical research to determine the evidence for the benefits of OTC anti-oxidants in MS. METHODS: Using predefined criteria, we searched key databases. Two authors scrutinized all studies against inclusion/exclusion criteria, assessed study risk-of-bias and extracted results. RESULTS: Of the 3507 titles, 145 met criteria and included compounds, α(alpha)-lipoic acid (ALA), anti-oxidant vitamins, Ginkgo biloba, quercetin, resveratrol and epigallocatechin-3-gallate (ECGC). The strongest evidence to support OTC anti-oxidants was for compounds EGCG and ALA in animal models; both consistently showed anti-inflammatory/anti-oxidant effects and reduced neurological impairment. Only vitamin E, Ginkgo biloba and ALA were examined for efficacy in pilot clinical trials with either conflicting evidence or evidence of no benefit. CONCLUSION: OTC anti-oxidants EGCG and ALA show the most consistent benefit, however only in preclinical studies. There is no evidence that they alter MS relapses or progression. Future work should focus on testing more of these therapies for clinical efficacy before recommending them to MS patients.


Asunto(s)
Antioxidantes/farmacología , Catequina/análogos & derivados , Ginkgo biloba , Esclerosis Múltiple/tratamiento farmacológico , Medicamentos sin Prescripción/farmacología , Quercetina/farmacología , Estilbenos/farmacología , Ácido Tióctico/farmacología , Animales , Catequina/farmacología , Humanos , Resveratrol
19.
Adv Neurobiol ; 37: 445-456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39207707

RESUMEN

Multiple sclerosis (MS) is a devastating autoimmune disease that leads to profound disability. This disability arises from the stochastic, regional loss of myelin-the insulating sheath surrounding neurons-in the central nervous system (CNS). The demyelinated regions are dominated by the brain's resident macrophages: microglia. Microglia perform a variety of functions in MS and are thought to initiate and perpetuate demyelination through their interactions with peripheral immune cells that traffic into the brain. However, microglia are also likely essential for recruiting and promoting the differentiation of cells that can restore lost myelin in a process known as remyelination. Given these seemingly opposing functions, an overarching beneficial or detrimental role is yet to be ascribed to these immune cells. In this chapter, we will discuss microglia dynamics throughout the MS disease course and probe the apparent dichotomy of microglia as the drivers of both demyelination and remyelination.


Asunto(s)
Microglía , Esclerosis Múltiple , Vaina de Mielina , Microglía/metabolismo , Microglía/patología , Humanos , Esclerosis Múltiple/patología , Esclerosis Múltiple/inmunología , Vaina de Mielina/patología , Vaina de Mielina/metabolismo , Remielinización/fisiología , Animales , Encéfalo/patología , Encéfalo/inmunología , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/metabolismo
20.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826296

RESUMEN

The capacity to regenerate myelin in the central nervous system (CNS) diminishes with age. This decline is particularly evident in multiple sclerosis (MS), which has been suggested to exhibit features of accelerated biological aging. Whether cellular senescence, a hallmark of aging, contributes to remyelination impairment remains unknown. Here, we show that senescent cells (SCs) accumulate within demyelinated lesions after injury, and their elimination enhances remyelination in young mice but not in aged mice. In young mice, we observed the upregulation of senescence-associated transcripts primarily in microglia after demyelination, followed by their reduction during remyelination. However, in aged mice, senescence-associated factors persisted within lesions, correlating with inefficient remyelination. We found that SC elimination enhanced remyelination in young mice but was ineffective in aged mice. Proteomic analysis of senescence-associated secretory phenotype (SASP) revealed elevated levels of CCL11/Eotaxin-1 in lesions, which was found to inhibit efficient oligodendrocyte maturation. These results suggest therapeutic targeting of SASP components, such as CCL11, may improve remyelination in aging and MS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA