Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(41): e202400778, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38770991

RESUMEN

A ß-glucosyl sterol probe bearing a terminal alkyne moiety for fluorescent tagging enables the investigation of the neuronal and intracellular localization of this class of compounds involved in neurodegenerative diseases. The compound showed localization in the neuronal cells, with marked differences in the uptake and metabolism leading to enhanced persistence with respect to the un-glycosylated sterol analogue. In addition, a different impact was observed towards lysosomes, with the simple sterol probe showing the enlargement of the lysosome structures, while the ß-glucosyl sterol was less capable to alter the morphology of this specific organelle.


Asunto(s)
Colorantes Fluorescentes , Lisosomas , Enfermedades Neurodegenerativas , Neuronas , Esteroles , Colorantes Fluorescentes/química , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Lisosomas/metabolismo , Lisosomas/química , Esteroles/química , Humanos , Animales
2.
Neurobiol Dis ; 176: 105941, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473592

RESUMEN

The protein DJ-1 is mutated in rare familial forms of recessive Parkinson's disease and in parkinsonism accompanied by amyotrophic lateral sclerosis symptoms and dementia. DJ-1 is considered a multitasking protein able to confer protection under various conditions of stress. However, the precise cellular function still remains elusive. In the present work, we evaluated fruit flies lacking the expression of the DJ-1 homolog dj-1ß as compared to control aged-matched individuals. Behavioral evaluations included lifespan, locomotion in an open field arena, sensitivity to oxidative insults, and resistance to starvation. Molecular analyses were carried out by analyzing the mitochondrial morphology and functionality, and the autophagic response. We demonstrated that dj-1ß null mutant flies are hypoactive and display higher sensitivity to oxidative insults and food deprivation. Analysis of mitochondrial homeostasis revealed that loss of dj-1ß leads to larger and more circular mitochondria, characterized by impaired complex-I-linked respiration while preserving ATP production capacity. Additionally, dj-1ß null mutant flies present an impaired autophagic response, which is suppressed by treatment with the antioxidant molecule N-Acetyl-L-Cysteine. Overall, our data point to a mechanism whereby DJ-1 plays a critical role in the maintenance of energy homeostasis, by sustaining mitochondrial homeostasis and affecting the autophagic flux through the maintenance of the cellular redox state. In light of the involvement of DJ-1 in neurodegenerative diseases and considering that neurons are highly energy-demanding cells, particularly sensitive to redox stress, our study sheds light on a key role of DJ-1 in the maintenance of cellular homeostasis.


Asunto(s)
Proteínas de Drosophila , Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Mitocondrias/metabolismo , Antioxidantes , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/metabolismo , Drosophila/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Estrés Oxidativo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Acta Neuropathol ; 144(1): 81-106, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35596783

RESUMEN

The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration. In this study, we show that EAAT2 trafficking is impaired by the leucine-rich repeat kinase 2 (LRRK2) pathogenic variant G2019S, a common cause of late-onset familial Parkinson's disease (PD). In LRRK2 G2019S human brains and experimental animal models, EAAT2 protein levels are significantly decreased, which is associated with elevated gliosis. The decreased expression of the transporter correlates with its reduced functionality in mouse LRRK2 G2019S purified astrocytic terminals and in Xenopus laevis oocytes expressing human LRRK2 G2019S. In LRRK2 G2019S knock-in mouse brain, the correct surface localization of the endogenous transporter is impaired, resulting in its interaction with a plethora of endo-vesicular proteins. Mechanistically, we report that pathogenic LRRK2 kinase activity delays the recycling of the transporter to the plasma membrane via Rabs inactivation, causing its intracellular re-localization and degradation. Taken together, our results demonstrate that pathogenic LRRK2 interferes with the physiology of EAAT2, pointing to extracellular glutamate overload as a possible contributor to neurodegeneration in PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson , Sistema de Transporte de Aminoácidos X-AG , Animales , Glutamatos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Mutación , Neuronas/patología , Enfermedad de Parkinson/patología
4.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208778

RESUMEN

Parkinson's disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid-protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.


Asunto(s)
Ceramidas/biosíntesis , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Vías Biosintéticas/efectos de los fármacos , Línea Celular Tumoral , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Ácidos Grasos Monoinsaturados/metabolismo , Humanos , Espacio Intracelular/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Esfingolípidos/metabolismo
5.
Angew Chem Int Ed Engl ; 60(10): 5173-5178, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33180342

RESUMEN

Proteins reconfigure their 3D-structure, and consequently their function, under the control of specific molecular interactions that sense, process and transmit information from the surrounding environment. When this fundamental process is hampered, many pathologies occur as in the case of protein misfolding diseases. In this work, we follow the early steps of α-synuclein (aS) aggregation, a process associated with Parkinson's disease etiopathogenesis, that is promptly promoted by a light-mediated binding between the protein and a photoactive foldamer. The latter can switch between two conformations, one of which generates supramolecular fibrillar seeds that act as molecular templates able to induce a fast ß-sheet transition for aS monomers that successively undergo fibrillar polymerization. The proposed method represents a powerful tool to study protein aggregation relevant to misfolding diseases in a controlled and inducible system.


Asunto(s)
Peptidomiméticos/química , Multimerización de Proteína/efectos de los fármacos , alfa-Sinucleína/metabolismo , Humanos , Peptidomiméticos/efectos de la radiación , Conformación Proteica/efectos de la radiación , alfa-Sinucleína/efectos de los fármacos
6.
J Chem Inf Model ; 60(10): 5265-5281, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32866007

RESUMEN

The in solution synchrotron small-angle X-ray scattering SAXS technique has been used to investigate an intrinsically disordered protein (IDP) related to Parkinson's disease, the α-synuclein (α-syn), in prefibrillar diluted conditions. SAXS experiments have been performed as a function of temperature and concentration on the wild type (WT) and on the three pathogenic mutants G51D, E46K, and A53T. To identify the conformers that populate WT α-syn and the pathogenic mutants in prefibrillar conditions, scattering data have been analyzed by a new variational bayesian weighting method (VBWSAS) based on an ensemble of conformers, which includes unfolded monomers, trimers, and tetramers, both in helical-rich and strand-rich forms. The developed VBWSAS method uses a thermodynamic scheme to account for temperature and concentration effects and considers long-range protein-protein interactions in the framework of the random phase approximation. The global analysis of the whole set of data indicates that WT α-syn is mostly present as unfolded monomers and trimers (helical-rich trimers at low T and strand-rich trimers at high T), but not tetramers, as previously derived by several studies. On the contrary, different conformer combinations characterize mutants. In the α-syn G51D mutant, the most abundant aggregates at all the temperatures are strand-rich tetramers. Strand-rich tetramers are also the predominant forms in the A53T mutant, but their weight decreases with temperature. Only monomeric conformers, with a preference for the ones with the smallest sizes, are present in the E46K mutant. The derived conformational behavior then suggests a different availability of species prone to aggregate, depending on mutation, temperature, and concentration and accounting for the different neurotoxicity of α-syn variants. Indeed, this approach may be of pivotal importance to describe conformational and aggregational properties of other IDPs.


Asunto(s)
alfa-Sinucleína , Teorema de Bayes , Mutación , Dispersión del Ángulo Pequeño , Termodinámica , Difracción de Rayos X , Rayos X , alfa-Sinucleína/genética
7.
Biophys J ; 113(8): 1685-1696, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045863

RESUMEN

The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct ß-sheets sequentially unfold using the unique possibility offered by high-pressure Fourier transform infrared spectroscopy. The results point toward the formation of kinetic traps in the energy landscape of aS fibril disassembly and the presence of transient partially folded species during the process. Since we found that the dissociation of wild-type aS fibrils by high pressure is reversible upon pressure release, the disassembled molecules likely retain structural information that favors fibril reformation. To deconstruct the role of the different regions of aS sequence in this process, we measured the high-pressure dissociation of amyloids formed by covalent chimeric dimers of aS (syn-syn) and by the aS deletion mutant that lacks the C-terminus, i.e., aS (1-99). The results allowed us to single out the role of dimerization and that of the C-terminus in the complete maturation of fibrillar aS.


Asunto(s)
Amiloide/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/química , Dicroismo Circular , Escherichia coli , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Modelos Moleculares , Mutación , Presión , Conformación Proteica en Lámina beta , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , alfa-Sinucleína/química
8.
Arch Biochem Biophys ; 627: 46-55, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28624352

RESUMEN

α-synuclein amyloid fibrils are found in surviving neurons of Parkinson's disease affected patients, but the role they play in the disease development is still under debate. A growing number of evidences points to soluble oligomers as the major cytotoxic species, while insoluble fibrillar aggregates could even play a protection role. In this work, we investigate α-synuclein fibrils dissociation induced at high pressure by means of Small Angle X-ray Scattering and Fourier Transform Infrared Spectroscopy. Fibrils were produced from wild type α-synuclein and two familial mutants, A30P and A53T. Our results enlighten the different reversible nature of α-synuclein fibrils fragmentation at high pressure and suggest water excluded volumes presence in the fibrils core. Wild type and A30P species stabilized at high pressure are highly amyloidogenic and quickly re-associate into fibrils upon decompression, while A53T species shows a partial reversibility of the process likely due to the presence of an intermediate oligomeric state stabilized at high pressure. The amyloid fibrils dissociation process is here suggested to be associated to a negative activation volume, supporting the notion that α-synuclein fibrils are in a high-volume and high-compressibility state and hinting at the presence of a hydration-mediated activated state from which dissociation occurs.


Asunto(s)
Amiloide/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/química , Amiloide/genética , Humanos , Enfermedad de Parkinson/genética , Mutación Puntual , Presión , Dispersión del Ángulo Pequeño , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , alfa-Sinucleína/química , alfa-Sinucleína/genética
9.
Q Rev Biophys ; 47(1): 1-48, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24443929

RESUMEN

Alpha-synuclein (aS) and its aggregation properties are central in the development and spread of Parkinson's disease. Point mutations and multiplications of the SNCA gene encoding aS cause autosomal dominant forms of the disorder. Moreover, protein inclusions found in the surviving neurons of parkinsonian brains consist mainly of a fibrillar form of aS. Aggregates of aS, which form a transient, complex and heterogeneous ensemble, participate in a wide variety of toxic mechanisms that may be amplified by aS spreading among neighbouring neurons. Recently, significant effort has been directed into the study of the aS aggregation process and the impact of aS aggregates on neuron survival. In this review, we present state-of-the-art biophysical studies on the aS aggregation process in vitro and in cellular models. We comprehensively review the new insights generated by the recent biophysical investigations, which could provide a solid basis from which to design future biomedical studies. The diverse cellular models of aS toxicity and their potential use in the biophysical investigation are also discussed.


Asunto(s)
Biofisica/métodos , Multimerización de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/toxicidad , Secuencia de Aminoácidos , Animales , Células/metabolismo , Humanos , Cinética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
10.
Hum Mol Genet ; 23(21): 5615-29, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24895406

RESUMEN

Familial and idiopathic Parkinson's disease (PD) is associated with the abnormal neuronal accumulation of α-synuclein (aS) leading to ß-sheet-rich aggregates called Lewy Bodies (LBs). Moreover, single point mutation in aS gene and gene multiplication lead to autosomal dominant forms of PD. A connection between PD and the 14-3-3 chaperone-like proteins was recently proposed, based on the fact that some of the 14-3-3 isoforms can interact with genetic PD-associated proteins such as parkin, LRRK2 and aS and were found as components of LBs in human PD. In particular, a direct interaction between 14-3-3η and aS was reported when probed by co-immunoprecipitation from cell models, from parkinsonian brains and by surface plasmon resonance in vitro. However, the mechanisms through which 14-3-3η and aS interact in PD brains remain unclear. Herein, we show that while 14-3-3η is unable to bind monomeric aS, it interacts with aS oligomers which occur during the early stages of aS aggregation. This interaction diverts the aggregation process even when 14-3-3η is present in sub-stoichiometric amounts relative to aS. When aS level is overwhelmingly higher than that of 14-3-3η, the fibrillation process becomes a sequestration mechanism for 14-3-3η, undermining all processes governed by this protein. Using a panel of complementary techniques, we single out the stage of aggregation at which the aS/14-3-3η interaction occurs, characterize the products of the resulting processes, and show how the processes elucidated in vitro are relevant in cell models. Our findings constitute a first step in elucidating the molecular mechanism of aS/14-3-3η interaction and in understanding the critical aggregation step at which 14-3-3η has the potential to rescue aS-induced cellular toxicity.


Asunto(s)
Proteínas 14-3-3/metabolismo , Amiloidosis/metabolismo , Agregación Patológica de Proteínas , Transducción de Señal , alfa-Sinucleína/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Humanos , Cinética , Unión Proteica , Isoformas de Proteínas , alfa-Sinucleína/química , alfa-Sinucleína/genética
11.
Biochem Biophys Res Commun ; 478(3): 1141-6, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27539321

RESUMEN

Mutations in LRRK2 gene cause inherited Parkinson's disease (PD) and variations around LRRK2 act as risk factor for disease. Similar to sporadic disease, LRRK2-linked cases show late onset and, typically, the presence of proteinaceous inclusions named Lewy bodies (LBs) in neurons. Recently, defects on ceramide (Cer) metabolism have been recognized in PD. In particular, heterozygous mutations in the gene encoding for glucocerebrosidase (GBA1), a lysosomal enzyme converting glucosyl-ceramides (Glc-Cer) into Cer, increase the risk of developing PD. Although several studies have linked LRRK2 with membrane-related processes and autophagic-lysosomal pathway regulation, whether this protein impinges on the Cer pathway has not been addressed. Here, using a targeted lipidomics approach, we report an altered sphingolipid composition in Lrrk2(-/-) mouse brains. In particular, we observe a significant increase of Cer levels in Lrrk2(-/-) mice and direct effects on GBA1. Collectively, our results suggest a link between LRRK2 and Cer metabolism, providing new insights into the possible role of this protein in sphingolipids metabolism, with implications for PD therapeutics.


Asunto(s)
Encéfalo/metabolismo , Ceramidas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/deficiencia , Animales , Regulación hacia Abajo , Glucosilceramidasa/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Esfingolípidos/metabolismo
12.
FASEB J ; 29(6): 2484-94, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25713058

RESUMEN

α-Synuclein (aS) aggregation has been amply investigated for its involvement in Parkinson's disease because its amyloid fibrils are the main constituent of Lewy bodies, one of the hallmarks of the disease. aS aggregation was studied here in vitro and in cellular models to correlate aggregation products with toxicity mechanisms. Independent results published elsewhere suggested that aS overexpression and/or aggregation may impair cellular metabolism and cause mitochondrial damage. In this context, we report the characterization of changes in NADH fluorescence properties in vitro and in human embryonic kidney 293 cells upon aS aggregation. The application of the phasor approach to study NADH fluorescence lifetime and emission allowed us to identify changes that correlate with aS aggregation. In particular, the fraction of bound NADH, characterized by longer lifetimes in comparison to free NADH, is increased, and the maximum of the NADH emission is shifted toward shorter wavelengths in the presence of aggregating aS both in vitro and in cells. These data suggest that NADH binds to aggregated aS. NMR experiments in vitro substantiate such binding, which occurs during aggregation. NADH fluorescence is thus useful to detect aS aggregation and by extension the associated oxidative stress.


Asunto(s)
Fluorescencia , NAD/química , Agregado de Proteínas , alfa-Sinucleína/química , Células HEK293 , Humanos , Cuerpos de Lewy/química , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/ultraestructura , Espectroscopía de Resonancia Magnética , Microscopía Confocal , Microscopía Electrónica de Transmisión , Modelos Biológicos , NAD/metabolismo , NAD/ultraestructura , Enfermedad de Parkinson/metabolismo , Unión Proteica , Espectrometría de Fluorescencia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
13.
J Neuroinflammation ; 12: 230, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26646749

RESUMEN

BACKGROUND: Over-activated microglia and chronic neuroinflammation contribute to dopaminergic neuron degeneration and progression of Parkinson's disease (PD). Leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in autosomal dominantly inherited and sporadic PD cases, is highly expressed in immune cells, in which it regulates inflammation through a yet unclear mechanism. METHODS: Here, using pharmacological inhibition and cultured Lrrk2 (-/-) primary microglia cells, we validated LRRK2 as a positive modulator of inflammation and we investigated its specific function in microglia cells. RESULTS: Inhibition or genetic deletion of LRRK2 causes reduction of interleukin-1ß and cyclooxygenase-2 expression upon lipopolysaccharide-mediated inflammation. LRRK2 also takes part of the signaling trigged by α-synuclein fibrils, which culminates in induction of inflammatory mediators. At the molecular level, loss of LRRK2 or inhibition of its kinase activity results in increased phosphorylation of nuclear factor kappa-B (NF-κB) inhibitory subunit p50 at S337, a protein kinase A (PKA)-specific phosphorylation site, with consequent accumulation of p50 in the nucleus. CONCLUSIONS: Taken together, these findings point to a role of LRRK2 in microglia activation and sustainment of neuroinflammation and in controlling of NF-κB p50 inhibitory signaling. Understanding the molecular pathways coordinated by LRRK2 in activated microglia cells after pathological stimuli such us fibrillar α-synuclein holds the potential to provide novel targets for PD therapeutics.


Asunto(s)
Regulación hacia Abajo/fisiología , Mediadores de Inflamación/metabolismo , Microglía/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Transducción de Señal/fisiología , Animales , Células Cultivadas , Inflamación/metabolismo , Inflamación/prevención & control , Mediadores de Inflamación/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subunidad p50 de NF-kappa B/antagonistas & inhibidores
14.
ACS Chem Neurosci ; 15(2): 215-221, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38131609

RESUMEN

Since the SARS-CoV-2 virus started spreading worldwide, evidence pointed toward an impact of the infection on the nervous system. COVID-19 patients present neurological manifestations and have an increased risk of developing brain-related symptoms in the long term. In fact, evidence in support of the neuroinvasive potential of SARS-CoV-2 has emerged. Considering that viral parkisonism was observed as a consequence of encephalopathies caused by viral infections, it has been already suggested that COVID-19 could affect the dopaminergic neurons and contribute to neurodegeneration in Parkinson's disease (PD), by promoting the formation of amyloid fibrils constituted by the PD-related protein α-synuclein. Here, we observe not only that SARS-CoV-2 viral spike protein and nucleocapsid protein can alone promote α-synuclein aggregation but also that the spike protein organization in a corona shape on the viral envelope may be crucial in triggering fast amyloid fibrils formation, thus possibly contributing to PD pathogenesis.


Asunto(s)
COVID-19 , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enfermedad de Parkinson/metabolismo
15.
J Parkinsons Dis ; 14(3): 495-506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640169

RESUMEN

Background: Parkinson's disease is a progressive neurodegenerative disorder mainly distinguished by sporadic etiology, although a genetic component is also well established. Variants in the LRRK2 gene are associated with both familiar and sporadic disease. We have previously shown that PAK6 and 14-3-3γ protein interact with and regulate the activity of LRRK2. Objective: The aim of this study is to quantify PAK6 and 14-3-3γ in plasma as reliable biomarkers for the diagnosis of both sporadic and LRRK2-linked Parkinson's disease. Methods: After an initial quantification of PAK6 and 14-3-3γ expression by means of Western blot in post-mortem human brains, we verified the presence of the two proteins in plasma by using quantitative ELISA tests. We analyzed samples obtained from 39 healthy subjects, 40 patients with sporadic Parkinson's disease, 50 LRRK2-G2019S non-manifesting carriers and 31 patients with LRRK2-G2019S Parkinson's disease. Results: The amount of PAK6 and 14-3-3γ is significantly different in patients with Parkinson's disease compared to healthy subjects. Moreover, the amount of PAK6 also varies with the presence of the G2019S mutation in the LRRK2 gene. Although the generalized linear models show a low association between the presence of Parkinson's disease and PAK6, the kinase could be added in a broader panel of biomarkers for the diagnosis of Parkinson's disease. Conclusions: Changes of PAK6 and 14-3-3γ amount in plasma represent a shared readout for patients affected by sporadic and LRRK2-linked Parkinson's disease. Overall, they can contribute to the establishment of an extended panel of biomarkers for the diagnosis of Parkinson's disease.


Asunto(s)
Proteínas 14-3-3 , Biomarcadores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Quinasas p21 Activadas , Humanos , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Proteínas 14-3-3/sangre , Masculino , Quinasas p21 Activadas/sangre , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética , Femenino , Anciano , Biomarcadores/sangre , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Persona de Mediana Edad , Anciano de 80 o más Años , Estudios Prospectivos , Adulto , Mutación
16.
Cell Death Dis ; 15(6): 424, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890356

RESUMEN

Alterations in the dopamine catabolic pathway are known to contribute to the degeneration of nigrostriatal neurons in Parkinson's disease (PD). The progressive cellular buildup of the highly reactive intermediate 3,4-dihydroxyphenylacetaldehye (DOPAL) generates protein cross-linking, oligomerization of the PD-linked αSynuclein (αSyn) and imbalance in protein quality control. In this scenario, the autophagic cargo sequestome-1 (SQSTM1/p62) emerges as a target of DOPAL-dependent oligomerization and accumulation in cytosolic clusters. Although DOPAL-induced oxidative stress and activation of the Nrf2 pathway promote p62 expression, p62 oligomerization rather seems to be a consequence of direct DOPAL modification. DOPAL-induced p62 clusters are positive for ubiquitin and accumulate within lysosomal-related structures, likely affecting the autophagy-lysosomal functionality. Finally, p62 oligomerization and clustering is synergistically augmented by DOPAL-induced αSyn buildup. Hence, the substantial impact on p62 proteostasis caused by DOPAL appears of relevance for dopaminergic neurodegeneration, in which the progressive failure of degradative pathways and the deposition of proteins like αSyn, ubiquitin and p62 in inclusion bodies represent a major trait of PD pathology.


Asunto(s)
Dopamina , Proteína Sequestosoma-1 , Animales , Humanos , alfa-Sinucleína/metabolismo , Autofagia , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteína Sequestosoma-1/metabolismo
17.
Biochim Biophys Acta ; 1818(11): 2876-83, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22820150

RESUMEN

Alpha-synuclein is a natively unfolded protein widely expressed in neurons at the presynaptic level. It is linked to Parkinson's disease by two lines of evidence: amyloid fibrils of the protein accumulate in patients' brains and three genetic mutants cause autosomal dominant forms of the disease. The biological role of the protein and the mechanisms involved in the etiopathogenesis of Parkinson's disease are still unknown. Membrane binding causes the formation of an amphipathic alpha-helix, which lies on the surface without crossing the bilayer. Recent observations however reported that the application of a voltage induces a pore-like activity of alpha-synuclein. This study aims to characterize the pore forming activity of the protein starting from its monomeric form. In particular, experiments with planar lipid membranes allowed recording of conductance activity bursts with a defined and reproducible fingerprint. Additional experiments with deletion mutants and covalently bound alpha-synuclein dimers were performed to understand both pore assembly and stoichiometry. The information acquired allowed formulation of a model for pore formation at different conductance levels.


Asunto(s)
Membrana Celular , alfa-Sinucleína/metabolismo , Membrana Celular/metabolismo , Dimerización , Membrana Dobles de Lípidos
18.
Int J Biochem Cell Biol ; 154: 106345, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521722

RESUMEN

Mitochondria, endoplasmic reticulum and lysosomes are involved in different pathways that can regulate pre-synaptic function. In particular, they could modulate ATP availability in response to rapid changes, could control synaptic protein levels and adjust Ca2+ signalling, which could all impact on neuronal activity. Organelles functions in these processes need to be considered alone when describing the impact of pre-synaptic organelles on neurotransmission. However, the interplay among organelles, which occurs either via signalling pathways or through physical membranous contacts, has to be considered. In this brief review, the physiological role of organelles localized at the pre-synapse in neuronal function is discussed.


Asunto(s)
Neuronas , Orgánulos , Orgánulos/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Transmisión Sináptica , Calcio/metabolismo
19.
Antioxidants (Basel) ; 12(7)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37507945

RESUMEN

Oxygen reactive species (ROS) are a group of molecules generated from the incomplete reduction of oxygen. Due to their high reactivity, ROS can interact with and influence the function of multiple targets, which include DNA, lipids, and proteins. Among the proteins affected by ROS, AMP-activated protein kinase (AMPK) is considered a major sensor of the intracellular energetic status and a crucial hub involved in the regulation of key cellular processes, like autophagy and lysosomal function. Thanks to these features, AMPK has been recently demonstrated to be able to perceive signals related to the variation of mitochondrial dynamics and to transduce them to the lysosomes, influencing the autophagic flux. Since ROS production is largely dependent on mitochondrial activity, through the modulation of AMPK these molecules may represent important signaling agents which participate in the crosstalk between mitochondria and lysosomes, allowing the coordination of these organelles' functions. In this review, we will describe the mechanisms through which ROS activate AMPK and the signaling pathways that allow this protein to affect the autophagic process. The picture that emerges from the literature is that AMPK regulation is highly tissue-specific and that different pools of AMPK can be localized at specific intracellular compartments, thus differentially responding to altered ROS levels. For this reason, future studies will be highly advisable to discriminate the specific contribution of the activation of different AMPK subpopulations to the autophagic pathway.

20.
Cells ; 12(11)2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37296608

RESUMEN

Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Masculino , Enfermedad de Parkinson/patología , Hormonas , Encéfalo/patología , Hormonas Esteroides Gonadales , Enfermedades Neurodegenerativas/patología , Cromosomas Sexuales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA