Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Brain Res ; 241(3): 905-915, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36808464

RESUMEN

BACKGROUND: It has been demonstrated that in young and healthy individuals, there is a strong association between the amplitude of EEG-derived motor activity-related cortical potential or EEG spectral power (ESP) and voluntary muscle force. This association suggests that the motor-related ESP may serve as an index of central nervous system function in controlling voluntary muscle activation Therefore, it may potentially be used as an objective marker to track changes in functional neuroplasticity due to neurological disorders, aging, and following rehabilitation therapies. To this end, the relationship between the band-specific ESP-combined spectral power of EEG oscillatory and aperiodic (noise) components-and voluntary elbow flexion (EF) force has been analyzed in elder and young individuals. METHODS: 20 young (22.6 ± 0.87 year) and 28 elderly (74.79 ± 1.37 year) participants performed EF contractions at 20%, 50%, and 80% of maximum voluntary contraction (MVC) while high-density EEG signals were recorded. Both the absolute and relative ESPs were computed for the EEG frequency bands of interest. RESULTS: The MVC force generated by the elderly was foreseeably lower than that of the young participants. Compared to young, the elderly cohort's (1) total ESP was significantly lower for the high (80% MVC) force task; (2) relative ESP in beta band was significantly elevated for the low and moderate (20% MVC and 50% MVC) force tasks; (3) absolute ESP failed to have a positive trend with force for EEG frequency bands of interest; and (4) beta-band relative ESP did not exhibit a significant decrease with increasing force levels. CONCLUSIONS: As opposed to young subjects, the beta-band relative ESP in elderly did not significantly decrease with increasing EF force values. This observation suggests the use of beta-band relative ESP as a potential biomarker for age-related motor control degeneration.


Asunto(s)
Articulación del Codo , Músculo Esquelético , Humanos , Anciano , Electromiografía , Músculo Esquelético/fisiología , Envejecimiento/fisiología , Electroencefalografía , Contracción Isométrica/fisiología
2.
Cerebrovasc Dis ; 51(5): 557-564, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35051941

RESUMEN

Up to 50% of stroke survivors have persistent, severe upper extremity paresis even after receiving rehabilitation. Repetitive transcranial magnetic stimulation (rTMS) can augment the effects of rehabilitation by modulating corticomotor excitability, but the conventional approach of facilitating excitability of the ipsilesional primary motor cortex (iM1) fails to produce motor improvement in stroke survivors with severe loss of ipsilesional substrate. Instead, the undamaged, contralesional dorsal premotor cortex (cPMd) may be a more suitable target. CPMd can offer alternate, bi-hemispheric and ipsilateral connections in support of paretic limb movement. This pilot, randomized clinical trial seeks to investigate whether rTMS delivered to facilitate cPMd in conjunction with rehabilitation produces greater gains in motor function than conventional rTMS delivered to facilitate iM1 in conjunction with rehabilitation in severely impaired stroke survivors. Twenty-four chronic (≥6 months) stroke survivors with severe loss of ipsilesional substrate (defined by the absence of physiologic evidence of excitable residual pathways tested using TMS) will be included. Participants will be randomized to receive rTMS to facilitate cPMd or iM1 in conjunction with task-oriented upper limb rehabilitation given for 2 sessions/week for 6 weeks. Assessments of primary outcome related to motor impairment (upper extremity Fugl-Meyer [UEFM]), motor function, neurophysiology, and functional neuroimaging will be made at baseline and at 6-week end-of-treatment. An additional assessment of motor outcomes will be repeated at 3-month follow-up to evaluate retention. The primary endpoint is 6-week change in UEFM. This pilot trial will provide preliminary evidence on the effects and mechanisms associated with facilitating intact cPMd in chronic severe stroke survivors. The trial is registered on clinicaltrials.gov, NCT03868410.


Asunto(s)
Corteza Motora , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Proyectos Piloto , Ensayos Clínicos Controlados Aleatorios como Asunto , Recuperación de la Función/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Estimulación Magnética Transcraneal , Resultado del Tratamiento , Extremidad Superior
3.
Spinal Cord ; 60(9): 774-778, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35246620

RESUMEN

STUDY DESIGN: A multisite, randomized, controlled, double-blinded phase I/II clinical trial. OBJECTIVE: The purpose of this clinical trial is to evaluate the safety, feasibility and efficacy of pairing noninvasive transcranial direct current stimulation (tDCS) with rehabilitation to promote paretic upper extremity recovery and functional independence in persons living with chronic cervical spinal cord injury (SCI). SETTING: Four-site trial conducted across Cleveland Clinic, Louis Stokes Veterans Affairs Medical Center of Cleveland and MetroHealth Rehabilitation Rehabilitation Institute of Ohio, and Kessler Foundation of New Jersey. METHODS: Forty-four adults (age ≥18 years) with tetraplegia following cervical SCI that occurred ≥1-year ago will participate. Participants will be randomly assigned to receive anodal tDCS or sham tDCS given in combination with upper extremity rehabilitation for 15 sessions each over 3-5 weeks. Assessments will be made twice at baseline separated by at least a 3-week interval, once at end-of-intervention, and once at 3-month follow-up. PRIMARY OUTCOME MEASURE(S): Primary outcome measure is upper extremity motor impairment assessed using the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP) scale. Functional abilities will be assessed using Capabilities of Upper Extremity-Test (CUE-T), while functional independence and participation restrictions will be evaluated using the self-care domain of Spinal Cord Independent Measure (SCIM), and Canadian Occupational Performance Measure (COPM). SECONDARY OUTCOME MEASURES: Treatment-associated change in corticospinal excitability and output will also be studied using transcranial magnetic stimulation (TMS) and safety (reports of adverse events) and feasibility (attrition, adherence etc.) will also be evaluated. TRIAL REGISTRATION: ClincalTrials.gov identifier NCT03892746. This clinical trial is being performed at four sites within the United States: Cleveland Clinic (lead site), Louis Stokes Cleveland Veterans Affairs Medical Center (VAMC) and MetroHealth Rehabilitation Institute in Ohio, and Kessler Foundation in New Jersey. The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación Transcraneal de Corriente Directa , Adolescente , Adulto , Canadá , Ensayos Clínicos Fase I como Asunto , Humanos , Estudios Multicéntricos como Asunto , Cuadriplejía , Ensayos Clínicos Controlados Aleatorios como Asunto , Recuperación de la Función , Estimulación Transcraneal de Corriente Directa/efectos adversos , Estimulación Transcraneal de Corriente Directa/métodos , Resultado del Tratamiento , Extremidad Superior
4.
Eur J Neurosci ; 53(4): 1029-1039, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32860302

RESUMEN

Evidence suggests that the posterior cerebellum is involved in emotional processing. Specific mechanisms by which the cerebellum contributes to the perception of and reaction to the emotional state of others are not well-known. It is likely that perceived emotions trigger anticipatory/preparatory motor changes. However, the extent to which the cerebellum modulates the activity of the motor cortex to contribute to emotional processing has not been directly investigated. In this study, we assessed whether the activity of the posterior cerebellum influences the modulation of motor cortical excitability in response to emotional stimuli. To this end, we transiently disrupted the neural activity of the left posterior cerebellum using 1 Hz repetitive transcranial magnetic stimulation (rTMS) and examined its effect on motor cortical excitability witnessed during emotional face processing (in comparison to the effects of sham rTMS). Motor excitability was measured as TMS-based motor evoked potentials (MEPs) recorded from bilateral first dorsal interosseous (FDI) muscles during the viewing of negative emotional (i.e. fearful) and neutral facial expressions. In line with previous evidence, we found that MEP amplitude was increased during the viewing of fearful compared to neutral faces. Critically, when left posterior cerebellar activity was transiently inhibited with 1 Hz rTMS, we observed a reduction in amplitude of MEPs recorded from the contralateral (right) motor cortex during the viewing of emotional (but not neutral) faces. In turn, inhibition of the left posterior cerebellum did not affect the amplitude of MEPs recorded from the ipsilateral motor cortex. Our findings suggest that the posterolateral (left) cerebellum modulates motor cortical response to negative emotional stimuli and may serve as an interface between limbic, cognitive, and motor systems.


Asunto(s)
Excitabilidad Cortical , Expresión Facial , Cerebelo , Electromiografía , Emociones , Potenciales Evocados Motores , Estimulación Magnética Transcraneal
5.
Exp Brain Res ; 239(10): 3077-3089, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34374814

RESUMEN

Transcranial magnetic stimulation (TMS) is used to investigate corticomotor neurophysiology associated with functional recovery in individuals with spinal cord injury (SCI). There is insufficient evidence about test-retest measurement properties of TMS in SCI. Therefore, we investigated test-retest agreement and reliability of TMS metrics representing corticomotor excitability, output, gain, map (representation), and inhibition in individuals with cervical SCI. We collected TMS metrics from biceps and triceps muscles because of the relevance of this proximal muscle pair to the cervical SCI population. Twelve individuals with chronic C3-C6 SCI participated in two TMS sessions separated by ≥ 2 weeks. Measurement agreement was evaluated using t tests, Bland-Altman limits of agreement and relative standard error of measurement (SEM%), while reliability was investigated using intra-class correlation coefficient (ICC) and concordance correlation coefficient (CCC). We calculated the smallest detectable change for all TMS metrics. All TMS metrics except antero-posterior map coordinates and corticomotor inhibition were in agreement upon repeated measurement though limits of agreement were generally large. Measures of corticomotor excitability, output and medio-lateral map coordinates had superior agreement (SEM% < 10). Metrics representing corticomotor excitability, output, and inhibition had good-to-excellent reliability (ICC/CCC > 0.75). The smallest detectable change for TMS metrics was generally high for a single individual, but this value reduced substantially with increase in sample size. We recommend use of corticomotor excitability and recruitment curve area owing to their superior measurement properties. A modest group size (20 or above) yields more stable measurements, which may favor use of TMS metrics in group level modulation after SCI.


Asunto(s)
Benchmarking , Estimulación Magnética Transcraneal , Potenciales Evocados Motores , Humanos , Cuadriplejía , Reproducibilidad de los Resultados
6.
Neural Plast ; 2021: 8858394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34426738

RESUMEN

Transcranial direct current stimulation (tDCS) has the potential to improve upper limb motor outcomes after stroke. According to the assumption of interhemispheric inhibition, excessive inhibition from the motor cortex of the unaffected hemisphere to the motor cortex of the affected hemisphere may worsen upper limb motor recovery after stroke. We evaluated the effects of active cathodal tDCS of the primary motor cortex of the unaffected hemisphere (ctDCSM1UH) compared to sham, in subjects within 72 hours to 6 weeks post ischemic stroke. Cathodal tDCS was intended to inhibit the motor cortex of the unaffected hemisphere and hence decrease the inhibition from the unaffected to the affected hemisphere and enhance motor recovery. We hypothesized that motor recovery would be greater in the active than in the sham group. In addition, greater motor recovery in the active group might be associated with bigger improvements in measures in activity and participation in the active than in the sham group. We also explored, for the first time, changes in cognition and sleep after ctDCSM1UH. Thirty subjects were randomized to six sessions of either active or sham ctDCSM1UH as add-on interventions to rehabilitation. The NIH Stroke Scale (NIHSS), Fugl-Meyer Assessment of Motor Recovery after Stroke (FMA), Barthel Index (BI), Stroke Impact Scale (SIS), and Montreal Cognitive Assessment (MoCA) were assessed before, after treatment, and three months later. In the intent-to-treat (ITT) analysis, there were significant GROUP∗TIME interactions reflecting stronger gains in the sham group for scores in NIHSS, FMA, BI, MoCA, and four SIS domains. At three months post intervention, the sham group improved significantly compared to posttreatment in FMA, NIHSS, BI, and three SIS domains while no significant changes occurred in the active group. Also at three months, NIHSS improved significantly in the sham group and worsened significantly in the active group. FMA scores at baseline were higher in the active than in the sham group. After adjustment of analysis according to baseline scores, the between-group differences in FMA changes were no longer statistically significant. Finally, none of the between-group differences in changes in outcomes after treatment were considered clinically relevant. In conclusion, active CtDCSM1UH did not have beneficial effects, compared to sham. These results were consistent with other studies that applied comparable tDCS intensities/current densities or treated subjects with severe upper limb motor impairments during the first weeks post stroke. Dose-finding studies early after stroke are necessary before planning larger clinical trials.


Asunto(s)
Corteza Motora/fisiopatología , Recuperación de la Función/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Estimulación Transcraneal de Corriente Directa , Extremidad Superior/fisiopatología , Anciano , Anciano de 80 o más Años , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Resultado del Tratamiento
8.
Ann Neurol ; 81(5): 653-663, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28380672

RESUMEN

OBJECTIVE: The experience with deep brain stimulation (DBS) for pain is largely based on uncontrolled studies targeting the somatosensory pathways, with mixed results. We hypothesized that targeting limbic neural pathways would modulate the affective sphere of pain and alleviate suffering. METHODS: We conducted a prospective, double-blinded, randomized, placebo-controlled, crossover study of DBS targeting the ventral striatum/anterior limb of the internal capsule (VS/ALIC) in 10 patients with poststroke pain syndrome. One month after bilateral DBS, patients were randomized to active DBS or sham for 3 months, followed by crossover for another 3-month period. The primary endpoint was a ≥50% improvement on the Pain Disability Index in 50% of patients with active DBS compared to sham. This 6-month blinded phase was followed by an 18-month open stimulation phase. RESULTS: Nine participants completed randomization. Although this trial was negative for its primary and secondary endpoints, we did observe significant differences in multiple outcome measures related to the affective sphere of pain (eg, Montgomery-Åsberg Depression Rating Scale, Beck Depression Inventory, Affective Pain Rating Index of the Short-Form McGill Pain Questionnaire). Fourteen serious adverse events were recorded and resolved. INTERPRETATION: VS/ALIC DBS to modulate the affective sphere of pain represents a paradigm shift in chronic pain management. Although this exploratory study was negative for its primary endpoint, VS/ALIC DBS demonstrated an acceptable safety profile and statistically significant improvements on multiple outcome measures related to the affective sphere of pain. Therefore, we believe these results justify further work on neuromodulation therapies targeting the affective sphere of pain. Ann Neurol 2017;81:653-663.


Asunto(s)
Dolor Crónico , Estimulación Encefálica Profunda/métodos , Cápsula Interna , Neuralgia , Evaluación de Resultado en la Atención de Salud , Accidente Cerebrovascular/complicaciones , Estriado Ventral , Adulto , Dolor Crónico/etiología , Dolor Crónico/psicología , Dolor Crónico/terapia , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuralgia/etiología , Neuralgia/psicología , Neuralgia/terapia , Dimensión del Dolor , Estudios Prospectivos
9.
Neuromodulation ; 21(2): 176-183, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29067749

RESUMEN

OBJECTIVES: To evaluate effects of somatosensory stimulation in the form of repetitive peripheral nerve sensory stimulation (RPSS) in combination with transcranial direct current stimulation (tDCS), tDCS alone, RPSS alone, or sham RPSS + tDCS as add-on interventions to training of wrist extension with functional electrical stimulation (FES), in chronic stroke patients with moderate to severe upper limb impairments in a crossover design. We hypothesized that the combination of RPSS and tDCS would enhance the effects of FES on active range of movement (ROM) of the paretic wrist to a greater extent than RPSS alone, tDCS alone or sham RPSS + tDCS. MATERIALS AND METHODS: The primary outcome was the active ROM of extension of the paretic wrist. Secondary outcomes were ROM of wrist flexion, grasp, and pinch strength of the paretic and nonparetic upper limbs, and ROM of wrist extension of the nonparetic wrist. Outcomes were blindly evaluated before and after each intervention. Analysis of variance with repeated measures with factors "session" and "time" was performed. RESULTS: After screening 2499 subjects, 22 were included. Data from 20 subjects were analyzed. There were significant effects of "time" for grasp force of the paretic limb and for ROM of wrist extension of the nonparetic limb, but no effects of "session" or interaction "session x time." There were no significant effects of "session," "time," or interaction "session x time" regarding other outcomes. CONCLUSIONS: Single sessions of PSS + tDCS, tDCS alone, or RPSS alone did not improve training effects in chronic stroke patients with moderate to severe impairment.


Asunto(s)
Encéfalo/fisiología , Trastornos del Movimiento/etiología , Trastornos del Movimiento/terapia , Sistema Nervioso Periférico/fisiología , Accidente Cerebrovascular/complicaciones , Estimulación Transcraneal de Corriente Directa , Estimulación Eléctrica Transcutánea del Nervio , Adulto , Anciano , Enfermedad Crónica , Terapia Combinada , Método Doble Ciego , Femenino , Humanos , Masculino , Nervio Mediano/fisiología , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Rango del Movimiento Articular/fisiología , Estudios Retrospectivos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Resultado del Tratamiento , Extremidad Superior/fisiopatología
10.
Exp Brain Res ; 235(4): 1097-1105, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28091708

RESUMEN

Motor overflow, typically described in the context of unimanual movements, refers to the natural tendency for a 'resting' limb to move during movement of the opposite limb and is thought to be influenced by inter-hemispheric interactions and intra-cortical networks within the 'resting' hemisphere. It is currently unknown, however, how motor overflow contributes to asymmetric force coordination task accuracy, referred to as bimanual interference, as there is need to generate unequal forces and corticospinal output for each limb. Here, we assessed motor overflow via motor evoked potentials (MEPs) and the regulation of motor overflow via inter-hemispheric inhibition (IHI) and short-intra-cortical inhibition (SICI) using transcranial magnetic stimulation in the presence of unimanual and bimanual isometric force production. All outcomes were measured in the left first dorsal interosseous (test hand) muscle, which maintained 30% maximal voluntary contraction (MVC), while the right hand (conditioning hand) was maintained at rest, 10, 30, or 70% of its MVC. We have found that as higher forces are generated with the conditioning hand, MEP amplitudes at the active test hand decreased and inter-hemispheric inhibition increased, suggesting reduced motor overflow in the presence of bimanual asymmetric forces. Furthermore, we found that subjects with less motor overflow (i.e., reduced MEP amplitudes in the test hemisphere) demonstrated poorer accuracy in maintaining 30% MVC across all conditions. These findings suggest that motor overflow may serve as an adaptive substrate to support bimanual asymmetric force coordination.


Asunto(s)
Potenciales Evocados Motores/fisiología , Lateralidad Funcional/fisiología , Mano , Corteza Motora/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Adulto , Análisis de Varianza , Electromiografía , Femenino , Humanos , Masculino , Inhibición Neural/fisiología , Tractos Piramidales/fisiología , Estadística como Asunto , Estimulación Magnética Transcraneal , Adulto Joven
11.
J Stroke Cerebrovasc Dis ; 26(5): 1121-1127, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28117211

RESUMEN

OBJECTIVE: A high proportion of patients with stroke do not qualify for repetitive transcranial magnetic stimulation (rTMS) clinical studies due to the presence of metallic stents. The ultimate concern is that any metal could become heated due to eddy currents. However, to date, no clinical safety data are available regarding the risk of metallic stents heating with rTMS. METHODS: We tested the safety of common rTMS protocols (1 Hz and 10 Hz) with stents used commonly in stroke, nitinol and elgiloy. In our method, stents were tested in gelled saline at 2 different locations: at the center and at the lobe of the coil. In addition, at each location, stent heating was evaluated in 3 different orientations: parallel to the long axis of coil, parallel to the short axis of the coil, and perpendicular to the plane of the coil. RESULTS: We found that stents did not heat to more than 1°C with either 1 Hz rTMS or 10 Hz rTMS in any configuration or orientation. Heating in general was greater at the lobe when the stent was oriented perpendicularly. CONCLUSIONS: Our study represents a new method for ex vivo quantification of stent heating. We have found that heating of stents was well below the Food and Drug Administration standards of 2°C. Thus, our study paves the way for in vivo testing of rTMS (≤10 Hz) in the presence of implanted magnetic resonance imaging-compatible stents in animal studies. When planning human safety studies though, geometry, orientation, and location relative to the coil would be important to consider as well.


Asunto(s)
Aleaciones , Aleaciones de Cromo , Cobalto , Procedimientos Endovasculares/instrumentación , Stents , Accidente Cerebrovascular/terapia , Estimulación Transcraneal de Corriente Directa , Procedimientos Endovasculares/efectos adversos , Análisis de Falla de Equipo , Calefacción , Humanos , Ensayo de Materiales , Diseño de Prótesis , Falla de Prótesis , Medición de Riesgo , Estimulación Transcraneal de Corriente Directa/efectos adversos
12.
J Stroke Cerebrovasc Dis ; 25(4): 927-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26851211

RESUMEN

OBJECTIVE: Noninvasive brain stimulation (NIBS) can augment functional recovery following stroke; however, the technique lacks regulatory approval. Low enrollment in NIBS clinical trials is a key roadblock. Here, we pursued evidence to support the prevailing opinion that enrollment in trials of NIBS is even lower than enrollment in trials of invasive, deep brain stimulation (DBS). METHODS: We compared 2 clinical trials in stroke conducted within a single urban hospital system, one employing NIBS and the other using DBS, (1) to identify specific criteria that generate low enrollment rates for NIBS and (2) to devise strategies to increase recruitment with guidance from DBS. RESULTS: Notably, we found that enrollment in the NIBS case study was 5 times lower (2.8%) than the DBS trial (14.5%) (χ(2) = 20.815, P < .0001). Although the number of candidates who met the inclusion criteria was not different (χ(2) = .04, P < .841), exclusion rates differed significantly between the 2 studies (χ(2) = 21.354, P < .0001). Beyond lack of interest, higher exclusion rates in the NIBS study were largely due to exclusion criteria that were not present in the DBS study, including restrictions for recurrent strokes, seizures, and medications. CONCLUSIONS: Based on our findings, we conclude and suggest that by (1) establishing criteria specific to each NIBS modality, (2) adjusting exclusion criteria based on guidance from DBS, and (3) including patients with common contraindications based on a probability of risk, we may increase enrollment and hence significantly impact the feasibility and generalizability of NIBS paradigms, particularly in stroke.


Asunto(s)
Encéfalo/fisiología , Estimulación Encefálica Profunda/métodos , Recuperación de la Función/fisiología , Accidente Cerebrovascular/terapia , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento , Adulto , Anciano , Ensayos Clínicos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dolor/etiología , Manejo del Dolor , Accidente Cerebrovascular/complicaciones , Adulto Joven
13.
Arch Phys Med Rehabil ; 96(4 Suppl): S94-103, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25194451

RESUMEN

OBJECTIVE: To determine how interhemispheric balance in stroke, measured using transcranial magnetic stimulation (TMS), relates to balance defined using neuroimaging (functional magnetic resonance [fMRI], diffusion-tensor imaging [DTI]) and how these metrics of balance are associated with clinical measures of upper-limb function and disability. DESIGN: Cross sectional. SETTING: Laboratory. PARTICIPANTS: Patients with chronic stroke (N = 10; age, 63 ± 9 y) in a population-based sample with unilateral upper-limb paresis. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Interhemispheric balance was measured with TMS, fMRI, and DTI. TMS defined interhemispheric differences in the recruitment of corticospinal output, size of the corticomotor output maps, and degree of mutual transcallosal inhibition that they exerted on one another. fMRI studied whether cortical activation during the movement of the paretic hand was lateralized to the ipsilesional or to the contralesional primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex (SMA). DTI was used to define interhemispheric differences in the integrity of the corticospinal tracts projecting from the M1. Clinical outcomes tested function (upper extremity Fugl-Meyer [UEFM]) and perceived disability in the use of the paretic hand (Motor Activity Log [MAL] amount score). RESULTS: Interhemispheric balance assessed with TMS relates differently to fMRI and DTI. Patients with high fMRI lateralization to the ipsilesional hemisphere possessed stronger ipsilesional corticomotor output maps (M1: r = .831, P = .006; PMC: r = .797, P = .01) and better balance of mutual transcallosal inhibition (r = .810, P = .015). Conversely, we found that patients with less integrity of the corticospinal tracts in the ipsilesional hemisphere show greater corticospinal output of homologous tracts in the contralesional hemisphere (r = .850, P = .004). However, an imbalance in integrity and output do not relate to transcallosal inhibition. Clinically, although patients with less integrity of corticospinal tracts from the ipsilesional hemisphere showed worse impairments (UEFM) (r = -.768, P = .016), those with low fMRI lateralization to the ipsilesional hemisphere had greater perception of disability (MAL amount score) (M1: r = .883, P = .006; PMC: r = .817, P = .007; SMA: r = .633, P = .062). CONCLUSIONS: In patients with chronic motor deficits of the upper limb, fMRI may serve to mark perceived disability and transcallosal influence between hemispheres. DTI-based integrity of the corticospinal tracts, however, may be useful in categorizing the range of functional impairments of the upper limb. Further, in patients with extensive corticospinal damage, DTI may help infer the role of the contralesional hemisphere in recovery.


Asunto(s)
Evaluación de la Discapacidad , Paresia/fisiopatología , Accidente Cerebrovascular/fisiopatología , Estimulación Magnética Transcraneal/métodos , Extremidad Superior , Anciano , Enfermedad Crónica , Estudios Transversales , Imagen de Difusión Tensora , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatología , Paresia/diagnóstico , Tractos Piramidales/fisiopatología
14.
J Neurophysiol ; 112(2): 276-86, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24790165

RESUMEN

Anticipating pain is important for avoiding injury; however, in chronic pain patients, anticipatory behavior can become maladaptive, leading to sensitization and limiting function. Knowledge of networks involved in pain anticipation and conditioning over time could help devise novel, better-targeted therapies. With the use of magnetoencephalography, we evaluated in 10 healthy subjects the neural processing of pain anticipation. Anticipatory cortical activity elicited by consecutive visual cues that signified imminent painful stimulus was compared with cues signifying nonpainful and no stimulus. We found that the neural processing of visually evoked pain anticipation involves the primary visual cortex along with cingulate and frontal regions. Visual cortex could quickly and independently encode and discriminate between visual cues associated with pain anticipation and no pain during preconscious phases following object presentation. When evaluating the effect of task repetition on participating cortical areas, we found that activity of prefrontal and cingulate regions was mostly prominent early on when subjects were still naive to a cue's contextual meaning. Visual cortical activity was significant throughout later phases. Although visual cortex may precisely and time efficiently decode cues anticipating pain or no pain, prefrontal areas establish the context associated with each cue. These findings have important implications toward processes involved in pain anticipation and maladaptive pain conditioning.


Asunto(s)
Anticipación Psicológica , Potenciales Evocados Visuales , Dolor/fisiopatología , Corteza Prefrontal/fisiología , Corteza Visual/fisiología , Adulto , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Dolor/psicología , Percepción Visual
15.
Neurorehabil Neural Repair ; 38(2): 109-121, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38156644

RESUMEN

BACKGROUND: Cerebellum shares robust di-synaptic dentato-thalamo-cortical (DTC) connections with the contralateral motor cortex. Preclinical studies have shown that DTC are excitatory in nature. Structural integrity of DTC is associated with better upper extremity (UE) motor function in people with stroke, indicating DTC are important for cerebellar influences on movement. However, there is a lack of understanding of physiologic influence of DTC in humans, largely due to difficulty in accessing the dentate nucleus. OBJECTIVE: Characterize DTC physiology using dentate nucleus deep brain stimulation (DBS) combined with transcranial magnetic stimulation (TMS) in stroke. METHODS: Nine chronic stroke survivors with moderate-to-severe UE impairment (Fugl-Meyer 13-38) underwent a paired DBS-TMS experiment before receiving experimental dentate nucleus DBS in our first-in-human phase I trial (Baker et al., 2023, Nature Medicine). Conditioning DBS pulses were given to dentate nucleus 1 to 10 ms prior to supra-threshold TMS pulses given to ipsilesional motor cortex. Effects were assessed on motor evoked potentials (MEPs). Size of DBS-conditioned MEPs was expressed relative to TMS MEPs, where values >1 indicate facilitation. RESULTS: Dentate nucleus DBS led to facilitation of MEPs at short-latency intervals (3.5 and 5 ms, P = .049 and .021, respectively), a phenomenon we have termed dentato-cortical facilitation (DCF). Higher DCF was observed among patients with more severe UE impairment. Diffusion tensor imaging revealed microstructure of thalamo-cortical portion of DTC was related to higher corticomotor excitability. CONCLUSIONS: Our in vivo investigation reveals for the first time in humans the intrinsic excitatory properties of DTC, which can serve as a novel therapeutic target for post-stroke motor recovery.


Asunto(s)
Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Cerebelo , Imagen de Difusión Tensora , Potenciales Evocados Motores/fisiología , Accidente Cerebrovascular/terapia , Estimulación Magnética Transcraneal/métodos , Extremidad Superior , Ensayos Clínicos Fase I como Asunto
16.
Clin Neurophysiol ; 161: 188-197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520799

RESUMEN

OBJECTIVE: Corticospinal inhibitory mechanisms are relevant to functional recovery but remain poorly understood after spinal cord injury (SCI). Post-injury characteristics of contralateral silent period (CSP), a measure of corticospinal inhibition evaluated using transcranial magnetic stimulation (TMS), is inconsistent in literature. We envisioned that investigating CSP across muscles with varying degrees of weakness may be a reasonable approach to resolve inconsistencies and elucidate the relevance of corticospinal inhibition for upper extremity function following SCI. METHODS: We studied 27 adults with chronic C1-C8 SCI (age 48.8 ± 16.1 years, 3 females) and 16 able-bodied participants (age 33.2 ± 11.8 years, 9 females). CSP characteristics were assessed across biceps (muscle power = 3-5) and triceps (muscle power = 1-3) representing stronger and weaker muscles, respectively. We assessed functional abilities using the Capabilities of the Upper Extremity Test (CUE-T). RESULTS: Participants with chronic SCI had prolonged CSPs for biceps but delayed and diminished CSPs for triceps compared to able-bodied participants. Early-onset CSPs for biceps and longer, deeper CSPs for triceps correlated with better CUE-T scores. CONCLUSIONS: Corticospinal inhibition is pronounced for stronger biceps but diminished for weaker triceps muscle in SCI indicating innervation relative to the level of injury matters in the study of CSP. SIGNIFICANCE: Nevertheless, corticospinal inhibition or CSP holds relevance for upper extremity function following SCI.


Asunto(s)
Inhibición Neural , Tractos Piramidales , Traumatismos de la Médula Espinal , Estimulación Magnética Transcraneal , Extremidad Superior , Humanos , Femenino , Traumatismos de la Médula Espinal/fisiopatología , Masculino , Adulto , Persona de Mediana Edad , Tractos Piramidales/fisiopatología , Extremidad Superior/fisiopatología , Estimulación Magnética Transcraneal/métodos , Inhibición Neural/fisiología , Músculo Esquelético/fisiopatología , Potenciales Evocados Motores/fisiología , Médula Cervical/fisiopatología , Médula Cervical/lesiones , Adulto Joven , Vértebras Cervicales/fisiopatología , Electromiografía/métodos
17.
J Neurophysiol ; 110(11): 2563-73, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24027104

RESUMEN

Muscle weakness associated with aging implicates central neural degeneration. However, role of the primary motor cortex (M1) is poorly understood, despite evidence that gains in strength in younger adults are associated with its adaptations. We investigated whether weakness of biceps brachii in aging analogously relates to processes in M1. We enrolled 20 young (22.6 ± 0.87 yr) and 28 old (74.79 ± 1.37 yr) right-handed participants. Using transcranial magnetic stimulation, representation of biceps in M1 was identified. We examined the effect of age and sex on strength of left elbow flexion, voluntary activation of biceps, corticospinal excitability and output, and short-interval intracortical and interhemispheric inhibition. Interhemispheric inhibition was significantly exaggerated in the old (P = 0.047), while strength tended to be lower (P = 0.075). Overall, women were weaker (P < 0.001). Processes of M1 related to strength or voluntary activation of biceps, but only in older adults. Corticospinal excitability was lower in weaker individuals (r = 0.38), and corticospinal output, intracortical inhibition and interhemispheric inhibition were reduced too in individuals who poorly activated biceps (r = 0.43, 0.54 and 0.38). Lower intracortical inhibition may reflect compensation for reduced corticospinal excitability, allowing weaker older adults to spread activity in M1 to recruit synergists and attempt to sustain motor output. Exaggerated interhemispheric inhibition, however, conflicts with previous evidence, potentially related to greater callosal damage in our older sample, our choice of proximal vs. distal muscle and differing influence of measurement of inhibition in rest vs. active states of muscle. Overall, age-specific relation of M1 to strength and muscle activation emphasizes that its adaptations only emerge when necessitated, as in a weakening neuromuscular system in aging.


Asunto(s)
Envejecimiento/fisiología , Corteza Motora/fisiología , Fuerza Muscular , Músculo Esquelético/fisiología , Adulto , Anciano , Femenino , Humanos , Masculino , Contracción Muscular , Músculo Esquelético/inervación , Inhibición Neural , Tractos Piramidales/fisiología , Factores Sexuales , Estimulación Magnética Transcraneal
18.
Brain Connect ; 13(8): 453-463, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36772802

RESUMEN

Background: Transcranial direct current stimulation (tDCS) targeting the primary motor cortex is modestly effective for promoting upper-limb motor function following stroke. The premotor cortex (PMC) represents an alternative target based on its higher likelihood of survival and dense motor-network connections. Objective: The objective of this study was to determine whether ipsilesional PMC tDCS affects motor network functional connectivity (FC) in association with reduction in motor impairment, and to determine whether this relationship is influenced by baseline motor severity. Methods: Participants with chronic stroke were randomly assigned to receive active-PMC or sham-tDCS with rehabilitation for 5 weeks. Resting-state functional magnetic resonance imaging was acquired to characterize change in FC across motor-cortical regions. Results: Our results indicated that moderate-to-severe participants who received active-tDCS had greater increases in PMC-to-PMC interhemispheric FC compared to those who received sham; this increase was correlated with reduction in proximal motor impairment. There was also an increase in intrahemispheric dorsal premotor cortex-primary motor cortex FC across participants regardless of severity or tDCS group assignment; this increase was correlated with a reduction in proximal motor impairment in only the mild participants. Conclusions: Our findings have significance for developing targeted brain stimulation approaches. While participants with milder impairments may inherently recruit viable substrates within the ipsilesional hemisphere, stimulation of PMC may enhance interhemispheric FC in association with recovery in more impaired participants. Trial Registration: ClinicalTrials.gov Identifier: NCT01539096; Registration date: February 21, 2012.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo , Imagen por Resonancia Magnética , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/complicaciones , Extremidad Superior , Estimulación Magnética Transcraneal/métodos
19.
Disabil Rehabil ; : 1-10, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962171

RESUMEN

PURPOSE: To estimate the effect of integrating custom-designed hand therapy video games (HTVG) with contralaterally controlled functional electrical stimulation (CCFES) therapy. METHODS: Fifty-two stroke survivors with chronic (>6 months) upper limb hemiplegia were randomized to 12 weeks of CCFES or CCFES + HTVG. Treatment involved self-administration of technology-mediated therapy at home plus therapist-administered CCFES-assisted task practice in the lab. Pre- and post-treatment assessments were made of hand dexterity, upper limb impairment and activity limitation, and cognitive function. RESULTS: No significant between-group differences were found on any outcome measure, and the average magnitudes of improvement within both groups were small. The incidence of technical problems with study devices at home was greater for the CCFES + HTVG group. This negatively affected adherence and may partially explain the absence of effect of HTVG. At end-of-treatment, large majorities of both treatment groups had positive perceptions of treatment efficacy and expressed enthusiasm for the treatments. CONCLUSION: This study makes an important contribution to the research literature on the importance of environmental factors, concomitant impairments, and technology simplification when designing technology-based therapies intended to be self-administered at home. This study failed to show any added benefit of HTVG to CCFES therapy.Clinicaltrials.gov (NCT03058796).


Contralaterally controlled functional electrical stimulation (CCFES) is an emerging therapy for upper limb rehabilitation after stroke that is designed, in part, to be self-administered at home.While movement-soliciting video games have shown promise in rehabilitation, this study failed to show a significant added benefit of integrating CCFES with hand therapy video games.For technology-based therapies intended to be self-administered at home, this study brings to light the importance of making every component of rehabilitation technology as user friendly and trouble-free as possible.For technology-based therapies intended to be self-administered at home, this study brings to light the importance of assuring that the home environment is conducive to home-based therapy.

20.
Nat Med ; 29(9): 2366-2374, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37580534

RESUMEN

Upper-extremity impairment after stroke remains a major therapeutic challenge and a target of neuromodulation treatment efforts. In this open-label, non-randomized phase I trial, we applied deep brain stimulation to the cerebellar dentate nucleus combined with renewed physical rehabilitation to promote functional reorganization of ipsilesional cortex in 12 individuals with persistent (1-3 years), moderate-to-severe upper-extremity impairment. No serious perioperative or stimulation-related adverse events were encountered, with participants demonstrating a seven-point median improvement on the Upper-Extremity Fugl-Meyer Assessment. All individuals who enrolled with partial preservation of distal motor function exceeded minimal clinically important difference regardless of time since stroke, with a median improvement of 15 Upper-Extremity Fugl-Meyer Assessment points. These robust functional gains were directly correlated with cortical reorganization evidenced by increased ipsilesional metabolism. Our findings support the safety and feasibility of deep brain stimulation to the cerebellar dentate nucleus as a promising tool for modulation of late-stage neuroplasticity for functional recovery and the need for larger clinical trials. ClinicalTrials.gov registration: NCT02835443 .


Asunto(s)
Estimulación Encefálica Profunda , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Estimulación Encefálica Profunda/efectos adversos , Resultado del Tratamiento , Accidente Cerebrovascular/terapia , Cerebelo , Recuperación de la Función
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA