Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Annu Rev Biochem ; 80: 333-55, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21675918

RESUMEN

Biological mobile zinc and nitric oxide (NO) are two prominent examples of inorganic compounds involved in numerous signaling pathways in living systems. In the past decade, a synergy of regulation, signaling, and translocation of these two species has emerged in several areas of human physiology, providing additional incentive for developing adequate detection systems for Zn(II) ions and NO in biological specimens. Fluorescent probes for both of these bioinorganic analytes provide excellent tools for their detection, with high spatial and temporal resolution. We review the most widely used fluorescent sensors for biological zinc and nitric oxide, together with promising new developments and unmet needs of contemporary Zn(II) and NO biological imaging. The interplay between zinc and nitric oxide in the nervous, cardiovascular, and immune systems is highlighted to illustrate the contributions of selective fluorescent probes to the study of these two important bioinorganic analytes.


Asunto(s)
Técnicas Biosensibles , Colorantes Fluorescentes/química , Óxido Nítrico/química , Zinc/química , Animales , Transferencia Resonante de Energía de Fluorescencia , Humanos , Estructura Molecular , Óxido Nítrico/metabolismo , Transducción de Señal/fisiología , Zinc/metabolismo
2.
Chem Rev ; 124(7): 4124-4257, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38512066

RESUMEN

Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.


Asunto(s)
Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/química , Colorantes Fluorescentes/química , Diagnóstico por Imagen , Azufre , Disulfuros
3.
J Am Chem Soc ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935871

RESUMEN

Persulfides (RSSH) are biologically important reactive sulfur species that are endogenously produced, protect key cysteine residues from irreversible oxidation, and are important intermediates during different enzymatic processes. Although persulfides are stronger nucleophiles than their thiol counterparts, persulfides can also act as electrophiles in their neutral, protonated form in specific environments. Moreover, persulfides are electrophilic at both sulfur atoms, and the reaction with a thiolate can lead to either H2S release with disulfide formation or alternatively result in transpersulfidation. Despite the broad acceptance of these reaction pathways, the specific properties that control whether persulfides react through the H2S-releasing or transpersulfidation pathway remain elusive. Herein, we use a combined computational and experimental approach to directly investigate the reactivity between persulfides and thiols to answer these questions. Using density functional theory (DFT) calculations, we demonstrate that increasing steric bulk or electron withdrawal near the persulfide can shunt persulfide reactivity through the transpersulfidation pathway. Building from these insights, we use a synthetic persulfide donor and an N-iodoacetyl l-tyrosine methyl ester (TME-IAM) trapping agent to experimentally monitor and measure transpersulfidation from a bulky penicillamine-based persulfide to a cysteine-based thiol, which, to the best of our knowledge, is the first direct observation of transpersulfidation between low-molecular-weight species. Taken together, these combined approaches highlight how the properties of persulfides are directly impacted by local environments, which has significant impacts in understanding the complex chemical biology of these reactive species.

4.
Inorg Chem ; 63(6): 3057-3062, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38286007

RESUMEN

H2S is a physiologically important signaling molecule with complex roles in biology and exists primarily as HS- at physiological pH. Despite this anionic character, few investigations have focused on the molecular recognition and reversible binding of this important biological anion. Using a series of imidazole and imidazolium host molecules, we investigate the role of preorganization and charge on HS- binding. Using a macrocyclic bis-imidazolium receptor, we demonstrate the unexpected 2:1 host-guest binding of HS-, which was characterized both in solution and by X-ray crystallography. To the best of our knowledge, this is the first example of this binding stoichiometry for HS- binding. Moreover, the short C-H···S distances of 2.53, 2.54, 2.76, and 2.79 Å are well within the sum of the van der Waals radii of the interacting atoms, which is consistent with strong C-H···S interactions.

5.
Angew Chem Int Ed Engl ; 63(24): e202402353, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38578835

RESUMEN

Hydrogen sulfide (H2S) is an important reactive sulfur species that is involved in many biological functions, and H2S imbalances have been indicated as a potential biomarker for various diseases. Different H2S donors have been developed to deliver H2S directly to biological systems, but few reports include donors with optical responses that allow for tracking of H2S release. Moreover, donor systems that use the same chemistry to deliver H2S across a palette of fluorescent responses remain lacking. Here we report five thiol-activated fluorescence turn-on COS/H2S donors that utilize blue, yellow, orange, red, and near infrared-emitting dyes functionalized with an H2S-releasing sulfenyl thiocarbonate scaffold. Upon treatment with thiols, each donor provides a fluorescence turn-on response (3-310-fold) and high H2S release efficiencies (>60 %). Using combined electrode and fluorescence experiments, we directly correlate the measured H2S release with the fluorescence response. All donors are biocompatible and release H2S in live cell environments. In addition, we demonstrate that the NIR donor allows for imaging H2S release in live rats via subcutaneous injection of the donor loaded into an alginate gel, which to the best of our knowledge is the first in vivo tracking of H2S release from a fluorogenic donor in non-transparent organisms.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/análisis , Colorantes Fluorescentes/química , Animales , Ratas , Humanos , Imagen Óptica , Estructura Molecular , Compuestos de Sulfhidrilo/química
6.
J Am Chem Soc ; 145(24): 13435-13443, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294127

RESUMEN

Reactive sulfur species (RSS) and reactive selenium species (RSeS) play integral roles in hydrogen sulfide (H2S) and hydrogen selenide (H2Se) biological signaling pathways, and dichalcogenide anions are proposed transient intermediates that facilitate a variety of biochemical transformations. Herein we report the selective synthesis, isolation, spectroscopic and structural characterization, and fundamental reactivity of persulfide (RSS-), perselenide (RSeSe-), thioselenide (RSSe-), and selenosulfide (RSeS-) anions. The isolated chalcogenides do not rely on steric protection for stability and have steric profiles analogous to cysteine (Cys). Simple reduction of S8 or Se by potassium benzyl thiolate (KSBn) or selenolate (KSeBn) in the presence of 18-crown-6 afforded [K(18-crown-6)][BnSS] (1), [K(18-crown-6)][BnSeSe] (2), [K(18-crown-6][BnSSe] (3), and [K(18-crown-6][BnSeS] (4). The chemical structure of each dichalcogenide was confirmed by X-ray crystallography and solution-state 1H, 13C, and 77Se NMR spectroscopy. To advance our understanding of the reactivity of these species, we demonstrated that reduction of 1-4 by PPh3 readily generates E═PPh3 (E: S, Se), and reduction of 1, 3, and 4 by DTT readily produces HE-/H2E. Furthermore, 1-4 react with CN- to produce ECN-, which is consistent with the detoxifying effects of dichalcogenide intermediates in the Rhodanese enzyme. Taken together, this work provides new insights into the inherent structural and reactivity characteristics of dichalcogenides relevant to biology and advances our understanding of the fundamental properties of these reactive anions.

7.
J Org Chem ; 88(21): 15516-15522, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37852231

RESUMEN

Several phosphaquinolinone derivatives have been synthesized and characterized to explore their usefulness in the realm of cell imaging. Solution-state photophysical properties in both aqueous and organic solutions were collected for these derivatives. Additionally, CCK-8 cell viability assays and fluorescent imaging in HeLa cells incubated with the new heterocyclic derivatives show evidence of favorable cell permeability, cell viability, and moderate intracellular localization when appended with the well-known morpholine targeting motif.


Asunto(s)
Colorantes Fluorescentes , Agua , Humanos , Estructura Molecular , Células HeLa , Ionóforos , Concentración de Iones de Hidrógeno
8.
Inorg Chem ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615644

RESUMEN

We investigated the differential oxidative and nucleophilic chemistry of reactive sulfur and oxygen anions (SSNO-, SNO-, NO2-, S42-, and HS-) using the simple reducing electrophile PPh2Cl. In the case of SSNO- reacting with PPh2Cl, a complex mixture of mono and diphosphorus products is formed exclusively in the P(V) oxidation state. We found that the phosphine stoichiometry dictates selectivity for oxidation to P=S/P=O products or transformation to P2 species. Interestingly, only chalcogen atoms are incorporated into the phosphorus products and, instead, nitrogen is released in the form of NO gas. Finally, we demonstrate that more reducing anions (S42- and HS-) also react with PPh2Cl with P=S bond formation as a key reaction driving force.

9.
Chem Soc Rev ; 51(4): 1454-1469, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35103265

RESUMEN

The short C-H⋯S contacts found in available structural data for both small molecules and larger biomolecular systems suggest that such contacts are an often overlooked yet important stabilizing interaction. Moreover, many of these short C-H⋯S contacts meet the definition of a hydrogen bonding interaction. Using available structural data from the Cambridge Structural Database (CSD), as well as selected examples from the literature in which important C-H⋯S contacts may have been overlooked, we highlight the generality of C-H⋯S hydrogen bonding as an important stabilizing interaction. To uncover and establish the generality of these interactions, we compare C-H⋯S contacts with other traditional hydrogen bond donors and acceptors as well as investigate how coordination number and metal bonding affect the preferred geometry of interactions in the solid state. This work establishes that the C-H⋯S bond meets the definition of a hydrogen bond and serves as a guide to identify C-H⋯S hydrogen bonds in diverse systems.


Asunto(s)
Enlace de Hidrógeno
10.
J Am Chem Soc ; 144(38): 17651-17660, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36121306

RESUMEN

Hydrogen sulfide (H2S) is an endogenously produced gaseous signaling molecule with important roles in regulating organelle function and stress. Because of its high reactivity, targeted delivery of H2S using small molecule H2S donors has garnered significant interest to minimize off-target effects. Although mitochondrially targeted H2S donors, such as AP39, have been reported previously and exhibit significantly higher potency than nontargeted donors, the expansion of targeted H2S delivery to other subcellular organelles remains largely absent. To fill this key unmet need, we report a library of organelle-targeted H2S donors that localize H2S delivery to specific subcellular organelles, including the Golgi apparatus, lysosome, endoplasmic reticulum, and mitochondria. We measured H2S production in vitro from each donor, confirmed the localization of H2S delivery using organelle-specific H2S responsive fluorescent probes, and demonstrated enhanced potency of these targeted H2S donors in providing protection against organelle-specific stress. We anticipate this class of targeted H2S donors will enable future studies of subcellular roles of H2S and the pathways by which H2S alleviates subcellular organelle stress.


Asunto(s)
Sulfuro de Hidrógeno , Colorantes Fluorescentes/metabolismo , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Orgánulos/metabolismo , Transducción de Señal
11.
J Am Chem Soc ; 144(33): 15324-15332, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35929817

RESUMEN

Reactive sulfur species (RSS) play critical roles in diverse chemical environments. Molecules containing sulfane sulfur (S0) have emerged as key species involved in cellular redox buffering as well as RSS generation, translocation, and action. Using cucurbit[7]uril (CB[7]) as a model hydrophobic host, we demonstrate here that S8 can be encapsulated to form a 1:1 host guest complex, which was confirmed by solution state experiments, mass spectrometry, and X-ray crystallography. The solid state structure of CB[7]/S8 shows that the encapsulated S8 is available to nucleophiles through the carbonyl portals of the host. Treatment of CB[7]/S8 with thiols results in efficient reduction of S8 to H2S in water at physiological pH. We establish that encapsulated S8 is attacked by a thiol within the CB[7] host and that the resultant soluble hydropolysulfide is ejected into solution, where it reacts further with thiols to generate soluble sulfane sulfur carriers and ultimately H2S. The formation of these intermediate is supported by observed kinetic saturation behavior, competitive inhibition experiments, and alkylative trapping experiments. We also demonstrate that CB[7]/S8 can be used to increase sulfane sulfur levels in live cells using fluorescence microscopy. More broadly, this work suggests a general activation mechanism of S8 by hydrophobic motifs, which may be applicable to proteins, membranes, or other bimolecular compartments that could transiently bind and solubilize S8 to promote reaction with thiols to solubilize and shuttle S8 back into the redox labile sulfane sulfur pool. Such a mechanism would provide an attractive manifold in which to understand the RSS translocation and trafficking.


Asunto(s)
Sulfuro de Hidrógeno , Compuestos de Sulfhidrilo , Compuestos Heterocíclicos con 2 Anillos , Sulfuro de Hidrógeno/química , Imidazolidinas , Compuestos Macrocíclicos , Piperidinas , Azufre/metabolismo , Agua
12.
J Org Chem ; 87(18): 12441-12446, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36070356

RESUMEN

Recent efforts have expanded the development of small molecule donors that release the important biological signaling molecule hydrogen sulfide (H2S). Previous work on 1,2,4-thiadiazolidin-3,5-diones (TDZNs) reported that these compounds release H2S directly, albeit inefficiently. However, TDZNs showed promising efficacy in H2S-mediated relaxation in ex vivo aortic ring relaxation models. Here, we show that TDZNs release carbonyl sulfide (COS) efficiently, which can be converted to H2S by the enzyme carbonic anhydrase (CA) rather than releasing H2S directly as previously reported.


Asunto(s)
Anhidrasas Carbónicas , Sulfuro de Hidrógeno , Anhidrasas Carbónicas/metabolismo , Compuestos de Sulfhidrilo , Sulfuros , Óxidos de Azufre
13.
Chem Soc Rev ; 50(13): 7436-7495, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34075930

RESUMEN

Compounds with a nitrobenzoxadiazole (NBD) skeleton exhibit prominent useful properties including environmental sensitivity, high reactivity toward amines and biothiols (including H2S) accompanied by distinct colorimetric and fluorescent changes, fluorescence-quenching ability, and small size, all of which facilitate biomolecular sensing and self-assembly. Amines are important biological nucleophiles, and the unique activity of NBD ethers with amines has allowed for site-specific protein labelling and for the detection of enzyme activities. Both H2S and biothiols are involved in a wide range of physiological processes in mammals, and misregulation of these small molecules is associated with numerous diseases including cancers. In this review, we focus on NBD-based synthetic probes as advanced chemical tools for biomolecular sensing. Specifically, we discuss the sensing mechanisms and selectivity of the probes, the design strategies for multi-reactable multi-quenching probes, and the associated biological applications of these important constructs. We also highlight self-assembled NBD-based probes and outline future directions for NBD-based chemosensors. We hope that this comprehensive review will facilitate the development of future probes for investigating and understanding different biological processes and aid the development of potential theranostic agents.


Asunto(s)
Aminas/análisis , Colorimetría/métodos , Compuestos de Sulfhidrilo/análisis , Animales , Fluorescencia , Humanos
14.
Angew Chem Int Ed Engl ; 61(30): e202204570, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35580198

RESUMEN

S/N crosstalk species derived from the interconnected reactivity of H2 S and NO facilitate the transport of reactive sulfur and nitrogen species in signaling, transport, and regulatory processes. We report here that simple Fe2+ ions, such as those that are bioavailable in the labile iron pool (LIP), react with thionitrite (SNO- ) and perthionitrite (SSNO- ) to yield the dinitrosyl iron complex [Fe(NO)2 (S5 )]- . In the reaction of FeCl2 with SNO- we were able to isolate the unstable intermediate hydrosulfido mononitrosyl iron complex [FeCl2 (NO)(SH)]- , which was characterized by X-ray crystallography. We also show that [Fe(NO)2 (S5 )]- is a simple synthon for nitrosylated Fe-S clusters via its reduction with PPh3 to yield Roussin's Red Salt ([Fe2 S2 (NO)4 ]2- ), which highlights the role of S/N crosstalk species in the assembly of fundamental Fe-S motifs.


Asunto(s)
Hierro , Compuestos Nitrosos , Hierro/química , Nitritos , Compuestos de Sulfhidrilo , Azufre
15.
J Am Chem Soc ; 143(46): 19542-19550, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34752701

RESUMEN

Hydrogen selenide (H2Se) is a central metabolite in the biological processing of selenium for incorporation into selenoproteins, which play crucial antioxidant roles in biological systems. Despite being integral to proper physiological function, this reactive selenium species (RSeS) has received limited attention. We recently reported an early example of a H2Se donor (TDN1042) that exhibited slow, sustained release through hydrolysis. Here we expand that technology based on the P═Se motif to develop cyclic-PSe compounds with increased rates of hydrolysis and function through well-defined mechanisms as monitored by 31P and 77Se NMR spectroscopy. In addition, we report a colorimetric method based on the reaction of H2Se with NBD-Cl to generate NBD-SeH (λmax = 551 nm), which can be used to detect free H2Se. Furthermore, we use TOF-SIMS (time of flight secondary ion mass spectroscopy) to demonstrate that these H2Se donors are cell permeable and use this technique for spatial mapping of the intracellular Se content after H2Se delivery. Moreover, these H2Se donors reduce endogenous intracellular reactive oxygen species (ROS) levels. Taken together, this work expands the toolbox of H2Se donor technology and sets the stage for future work focused on the biological activity and beneficial applications of H2Se and related bioinorganic RSeS.


Asunto(s)
Compuestos de Selenio/metabolismo , Células HeLa , Humanos , Hidrólisis , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Selenio/química
16.
J Org Chem ; 86(8): 5443-5451, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33818104

RESUMEN

Hydrogen sulfide (H2S) is an important biomolecule, and self-immolative thiocarbamates have shown great promise as triggerable H2S donors with suitable analogous control compounds; however, thiocarbamates with electron-deficient payloads are less efficient H2S donors. We report here the synthesis and study of a series of N-methylated esterase-triggered thiocarbamates that block the postulated unproductive deprotonation-based pathway for these compounds. The relative reaction profiles for H2S release across a series of electron-rich and electron-poor N-Me aniline payloads are examined experimentally and computationally. We show that thiocarbamate N-methylation does block some side reactivity and increases the H2S release profiles for electron-poor donors. Additionally, we show that isothiocyanate release is not a competitive pathway, and rather that the reduced efficiency of electron-poor donors is likely due to other side reactions.


Asunto(s)
Sulfuro de Hidrógeno , Tiocarbamatos , Metilación , Óxidos de Azufre
17.
Inorg Chem ; 60(11): 8135-8142, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33999607

RESUMEN

Recent studies have highlighted how reactive sulfur species (RSS) can be regulated and transported by metal-sulfur coordination compounds. We report herein the reactivity of PhB(tBuIm)3NiCl (1) with RSS, including the hydrosulfide anion ([Bu4N][SH]) and a reduced tetrasulfide ([K18-C-6]2[S4]). The strongly donating tris(carbene) ligand in 1 is geometrically constrained to a tetrahedral geometry, and the energetically preferable square planar geometry is not achievable with the [PhB(tBuIm)3]- ligand. Upon reaction of 1 with [Bu4N][SH] and [K18-C-6]2[S4], the square planar complexes PhB(tBuIm)2(tBuImH)Ni(SH)2 (2) and PhB(tBuIm)2(tBuImH)Ni(η2-S2) (3) are formed, respectively, via the protonation of one carbene ligand donor atom. Mechanistic investigation suggest that protonation occurs either from decomposition of 1 during the reaction progress, reactions with advantageous [Bu4N]+/[K18-C-6]+ countercations or from the generation of transient unidentified RSS that facilitate proton transfer reactions.

18.
Sens Actuators B Chem ; 3292021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35058674

RESUMEN

Hydrogen sulfide (H2S) is an important biomolecule and significant efforts have focused on developing chemical tools to aid different biological investigations. Of such tools, there are relatively few chemiluminescent or bioluminescent methods for H2S detection. Here we report two dioxetane-based chemiluminescent probes for H2S detection. With these probes, we directly compare the probe response to H2S-mediated azide reduction and nucleophilic displacement of 2,4-dinitrophenyl motifs and demonstrate that the SNAr cleavage of the DNP group results in a larger response and greater stability in water.

19.
Chem Soc Rev ; 49(12): 4070-4134, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32420562

RESUMEN

Sulfur-based ligands are versatile donors that play important roles in a wide array of subdisciplines of inorganic chemistry including organometallic chemistry, bioinorganic chemistry, and cluster science. Despite the breadth of compounds containing sulfur-based ligands, those containing the simplest mercapto group, hydrosulfide ion (HS-), are significantly less developed. The acceptance of H2S/HS- as important biological signaling compounds during the last decade has engendered a renewed interest in the chemistry of these species. Bioinorganic reactivity of hydrosulfide, however, is only one aspect of its fascinating chemistry, much of which revolves around its interactions with transition metal ions. The coordination of HS- to d-block elements produces a unique class of substances that differ in significant ways from more ubiquitous metal thiolates. This review examines the preparation, structure, spectroscopy, and reactivity of such compounds and the roles they play across several fields of chemistry.

20.
J Am Chem Soc ; 142(18): 8243-8251, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32283020

RESUMEN

Supramolecular anion receptors can be used to study the molecular recognition properties of the reactive yet biologically critical hydrochalcogenide anions (HCh-). Achieving selectivity for HCh- over the halides is challenging but necessary for not only developing future supramolecular probes for HCh- binding and detection, but also for understanding the fundamental properties that govern these binding and recognition events. Here we demonstrate that linear free energy relationships (LFERs)-including Hammett and Swain-Lupton plots-reveal a clear difference in sensitivity to the polarity of an aryl C-H hydrogen bond (HB) donor for HS- over other HCh- and halides. Analysis using electrostatic potential maps highlights that this difference in sensitivity results from a preference of the aryl C-H HB donor for HS- in this host scaffold. From this study, we demonstrate that LFERs are a powerful tool to gain interpretative insight into motif design for future anion-selective supramolecular receptors and highlight the importance of C-H HB donors for HS- recognition. From our results, we suggest that aryl C-H HB donors should be investigated in the next generation of HS- selective receptors based on the enhanced HS- selectivity over other competing anions in this system.


Asunto(s)
Sulfuros/química , Termodinámica , Enlace de Hidrógeno , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Estructura Molecular , Sulfuros/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA