Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Water Sci Technol ; 88(11): 2905-2916, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38096077

RESUMEN

The present paper investigated the potential of hydrodynamic cavitation (HC) as an effective tool for activating sodium percarbonate (SPC). The method's efficiency was demonstrated by effectively removing estrogens, which are pollutants that have adverse impacts on aquatic ecosystems. The effects of the SPC concentration, temperature of solution, and cavitation time were evaluated. After SPC/HC treatment, the removal of estrogens was monitored by liquid chromatography-tandem mass spectrometry (LC -MS/MS). Already after 4 s of treatment and 24 h of reaction time, more than 97% of estrogens (initial concentration of 300 ng/L) were removed. The effect of post-treatment time is not considered in several papers, even though it seems to be crucial and is discussed here. The results were supported by the values of degradation rate constants, which fit the pseudo-first-order kinetic model. We also verified that HC alone was not effective for estrogen removal under the selected conditions. The sustainability of the SPC/HC system was evaluated based on electric energy per order calculation. The combination of SPC and HC is a promising approach for rapidly degrading micropollutants such as estrogenic compounds without the need for additional technological steps, such as pH or temperature adjustment.


Asunto(s)
Hidrodinámica , Contaminantes Químicos del Agua , Espectrometría de Masas en Tándem , Ecosistema , Contaminantes Químicos del Agua/química , Estrógenos
2.
J Environ Manage ; 255: 109862, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778869

RESUMEN

Due to specific physical properties, hydrodynamic cavitation (HC) is assigned to the powerful technologies for treating the biotic contamination in water including cyanobacteria. Contaminated water stream (CWS) can be cavitated directly by passing through some HC device, or indirectly when high-pressure jet stream (HPJS) is directed against its flow. Relatively small HPJS stream can thus treat a big volume of CWS in a short time or even work in continuous mode. Cyanobacteria floating in the CWS are forced to flow through the mixing cavitation zone. Within 2 h after single HC treatment, cyanobacterial cell suspensions showed disintegration of larger colonies and enhanced biomass sedimentation. Additional pre-treatment of CWS with low amounts of hydrogen peroxide (H2O2; 33, 66 and 99 µmol/L) enhanced the effect of HC and led to further inhibition of cyanobacterial photosynthesis (maximum quantum yield of photosystem II decreased by up to 60%). The number of cyanobacterial cells in the treated CWS decreased continuously over 48 and 72 h, though some cells remained alive and were able to recover photosynthetic activity. The technique proposed (direction of a HPJS against a CWS and pre-treatment with low H2O2 concentrations) provides (i) effective removal of cells from the water column, and (ii) reduced contamination by organic compounds released from the cells (especially cyanotoxins) as the cell membranes are not destroyed and the cells remain alive. This process shows potential as an effective pre-treatment step in water purification processes related to cyanobacterial contamination.


Asunto(s)
Cianobacterias , Purificación del Agua , Hidrodinámica , Peróxido de Hidrógeno , Compuestos Orgánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA