Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(42): 26470-26481, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33004624

RESUMEN

The diversity and near universal expression of G protein-coupled receptors (GPCR) reflects their involvement in most physiological processes. The GPCR superfamily is the largest in the human genome, and GPCRs are common pharmaceutical targets. Therefore, uncovering the function of understudied GPCRs provides a wealth of untapped therapeutic potential. We previously identified an adhesion-class GPCR, Gpr116, as one of the most abundant GPCRs in the kidney. Here, we show that Gpr116 is highly expressed in specialized acid-secreting A-intercalated cells (A-ICs) in the kidney using both imaging and functional studies, and we demonstrate in situ receptor activation using a synthetic agonist peptide unique to Gpr116. Kidney-specific knockout (KO) of Gpr116 caused a significant reduction in urine pH (i.e., acidification) accompanied by an increase in blood pH and a decrease in pCO2 compared to WT littermates. Additionally, immunogold electron microscopy shows a greater accumulation of V-ATPase proton pumps at the apical surface of A-ICs in KO mice compared to controls. Furthermore, pretreatment of split-open collecting ducts with the synthetic agonist peptide significantly inhibits proton flux in ICs. These data suggest a tonic inhibitory role for Gpr116 in the regulation of V-ATPase trafficking and urinary acidification. Thus, the absence of Gpr116 results in a primary excretion of acid in KO mouse urine, leading to mild metabolic alkalosis ("renal tubular alkalosis"). In conclusion, we have uncovered a significant role for Gpr116 in kidney physiology, which may further inform studies in other organ systems that express this GPCR, such as the lung, testes, and small intestine.


Asunto(s)
Riñón/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Fenómenos Bioquímicos , Transporte Biológico , Movimiento Celular/fisiología , Células Epiteliales/metabolismo , Femenino , Homeostasis , Humanos , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Noqueados
2.
Am J Physiol Renal Physiol ; 319(3): F541-F551, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744087

RESUMEN

Plasma phosphate (Pi) levels are tightly controlled, and elevated plasma Pi levels are associated with an increased risk of cardiovascular complications and death. Two renal transport proteins mediate the majority of Pi reabsorption: Na+-phosphate cotransporters Npt2a and Npt2c, with Npt2a accounting for 70-80% of Pi reabsorption. The aim of the present study was to determine the in vitro effects of a novel Npt2a inhibitor (PF-06869206) in opossum kidney (OK) cells as well as determine its selectivity in vivo in Npt2a knockout (Npt2a-/-) mice. In OK cells, Npt2a inhibitor caused dose-dependent reductions of Na+-dependent Pi uptake (IC50: ~1.4 µmol/L), whereas the unselective Npt2 inhibitor phosphonoformic acid (PFA) resulted in an ~20% stronger inhibition of Pi uptake. The dose-dependent inhibitory effects were present after 24 h of incubation with both low- and high-Pi media. Michaelis-Menten kinetics in OK cells identified an ~2.4-fold higher Km for Pi in response to Npt2a inhibition with no significant change in apparent Vmax. Higher parathyroid hormone concentrations decreased Pi uptake equivalent to the maximal inhibitory effect of Npt2a inhibitor. In vivo, the Npt2a inhibitor induced a dose-dependent increase in urinary Pi excretion in wild-type mice (ED50: ~23 mg/kg), which was completely absent in Npt2a-/- mice, alongside a lack of decrease in plasma Pi. Of note, the Npt2a inhibitor-induced dose-dependent increase in urinary Na+ excretion was still present in Npt2a-/- mice, a response possibly mediated by an off-target acute inhibitory effect of the Npt2a inhibitor on open probability of the epithelial Na+ channel in the cortical collecting duct.


Asunto(s)
Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Zarigüeyas , Hormona Paratiroidea/farmacología , Técnicas de Placa-Clamp , Distribución Aleatoria , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética
3.
Am J Physiol Renal Physiol ; 313(6): F1243-F1253, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28814438

RESUMEN

Augmented intratubular angiotensin (ANG) II is a key determinant of enhanced distal Na+ reabsorption via activation of epithelial Na+ channels (ENaC) and other transporters, which leads to the development of high blood pressure (BP). In ANG II-induced hypertension, there is increased expression of the prorenin receptor (PRR) in the collecting duct (CD), which has been implicated in the stimulation of the sodium transporters and resultant hypertension. The impact of PRR deletion along the nephron on BP regulation and Na+ handling remains controversial. In the present study, we investigate the role of PRR in the regulation of renal function and BP by using a mouse model with specific deletion of PRR in the CD (CDPRR-KO). At basal conditions, CDPRR-KO mice had decreased renal function and lower systolic BP associated with higher fractional Na+ excretion and lower ANG II levels in urine. After 14 days of ANG II infusion (400 ng·kg-1·min-1), the increases in systolic BP and diastolic BP were mitigated in CDPRR-KO mice. CDPRR-KO mice had lower abundance of cleaved αENaC and γENaC, as well as lower ANG II and renin content in urine compared with wild-type mice. In isolated CD from CDPRR-KO mice, patch-clamp studies demonstrated that ANG II-dependent stimulation of ENaC activity was reduced because of fewer active channels and lower open probability. These data indicate that CD PRR contributes to renal function and BP responses during chronic ANG II infusion by enhancing renin activity, increasing ANG II, and activating ENaC in the distal nephron segments.


Asunto(s)
Angiotensina II , Presión Sanguínea , Hipertensión/metabolismo , Túbulos Renales Colectores/metabolismo , Natriuresis , ATPasas de Translocación de Protón/deficiencia , Receptores de Superficie Celular/deficiencia , Eliminación Renal , Sodio/metabolismo , Animales , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/metabolismo , Predisposición Genética a la Enfermedad , Hipertensión/genética , Hipertensión/fisiopatología , Hipertensión/prevención & control , Túbulos Renales Colectores/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteinuria/metabolismo , Proteinuria/fisiopatología , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/genética , Renina/metabolismo , Cloruro de Sodio Dietético/administración & dosificación , Cloruro de Sodio Dietético/metabolismo , Factores de Tiempo
4.
Kidney Int ; 91(6): 1398-1409, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28187982

RESUMEN

To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance.


Asunto(s)
Hiperpotasemia/metabolismo , Túbulos Renales/metabolismo , Potasio en la Dieta/metabolismo , Eliminación Renal , Canales Catiónicos TRPV/metabolismo , Adaptación Fisiológica , Animales , Calcio/metabolismo , Predisposición Genética a la Enfermedad , Homeostasis , Hiperpotasemia/genética , Hiperpotasemia/fisiopatología , Túbulos Renales/fisiopatología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Potasio en la Dieta/administración & dosificación , Receptores de Mineralocorticoides/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
5.
Proc Natl Acad Sci U S A ; 110(14): 5600-5, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23503843

RESUMEN

To uncover the potential cardiovascular effects of human polymorphisms influencing transforming growth factor ß1 (TGFß1) expression, we generated mice with Tgfb1 mRNA expression graded in five steps from 10% to 300% normal. Adrenal expression of the genes for mineralocorticoid-producing enzymes ranged from 50% normal in the hypermorphs at age 12 wk to 400% normal in the hypomorphs accompanied with proportionate changes in plasma aldosterone levels, whereas plasma volumes ranged from 50% to 150% normal accompanied by marked compensatory changes in plasma angiotensin II and renin levels. The aldosterone/renin ratio ranged from 0.3 times normal in the 300% hypermorphs to six times in the 10% hypomorphs, which have elevated blood pressure. Urinary output of water and electrolytes are markedly decreased in the 10% hypomorphs without significant change in the glomerular filtration rate. Renal activities for the Na(+), K(+)-ATPase, and epithelial sodium channel are markedly increased in the 10% hypomorphs. The hypertension in the 10% hypomorphs is corrected by spironolactone or amiloride at doses that do not change blood pressure in wild-type mice. Thus, changes in Tgfb1 expression cause marked progressive changes in multiple systems that regulate blood pressure and fluid homeostasis, with the major effects being mediated by changes in adrenocortical function.


Asunto(s)
Aldosterona/sangre , Regulación de la Expresión Génica/fisiología , Hiperaldosteronismo/etiología , Natriuresis/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Amilorida/farmacología , Angiotensina II/sangre , Animales , Presión Sanguínea/efectos de los fármacos , Cartilla de ADN/genética , Regulación de la Expresión Génica/genética , Tasa de Filtración Glomerular/fisiología , Hiperaldosteronismo/metabolismo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Renina/sangre , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Espironolactona/farmacología , Factor de Crecimiento Transformador beta1/genética , Urinálisis
6.
J Am Soc Nephrol ; 22(6): 1076-86, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21546577

RESUMEN

The putative transcription factor AF17 upregulates the transcription of the epithelial sodium channel (ENaC) genes, but whether AF17 modulates sodium homeostasis and BP is unknown. Here, we generated Af17-deficient mice to determine whether deletion of Af17 leads to sodium wasting and low BP. Compared with wild-type mice, Af17-deficient mice had lower BP (11 mmHg), higher urine volume, and increased sodium excretion despite mildly increased plasma concentrations of aldosterone. Deletion of Af17 led to increased dimethylation of histone H3 K79 and reduced ENaC function. The attenuated function of ENaC resulted from decreased ENaC mRNA and protein expression, fewer active channels, lower open probability, and reduced effective activity. In contrast, inducing high levels of plasma aldosterone by a variety of methods completely compensated for Af17 deficiency with respect to sodium handling and BP. Taken together, these data identify Af17 as a potential locus for the maintenance of sodium and BP homeostasis and suggest that a particular histone modification is directly linked to these processes. Af17-mediated regulation of BP is largely, but not exclusively, the result of modulating ENaC, suggesting it has potential as a therapeutic target for the control of BP.


Asunto(s)
Presión Sanguínea/fisiología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/fisiología , Riñón/fisiología , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/fisiología , Sodio/orina , Aldosterona/sangre , Animales , Presión Sanguínea/efectos de los fármacos , Proteínas de Unión al ADN/genética , Canales Epiteliales de Sodio/fisiología , Histonas/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Riñón/efectos de los fármacos , Ratones , Ratones Noqueados , Modelos Animales , Proteínas de Neoplasias/genética , Potasio en la Dieta/farmacología , Sodio en la Dieta/farmacología
7.
JCI Insight ; 2(18)2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28931751

RESUMEN

Supplementing diets with high potassium helps reduce hypertension in humans. Inwardly rectifying K+ channels Kir4.1 (Kcnj10) and Kir5.1 (Kcnj16) are highly expressed in the basolateral membrane of distal renal tubules and contribute to Na+ reabsorption and K+ secretion through the direct control of transepithelial voltage. To define the importance of Kir5.1 in blood pressure control under conditions of salt-induced hypertension, we generated a Kcnj16 knockout in Dahl salt-sensitive (SS) rats (SSKcnj16-/-). SSKcnj16-/- rats exhibited hypokalemia and reduced blood pressure, and when fed a high-salt diet (4% NaCl), experienced 100% mortality within a few days triggered by salt wasting and severe hypokalemia. Electrophysiological recordings of basolateral K+ channels in the collecting ducts isolated from SSKcnj16-/- rats revealed activity of only homomeric Kir4.1 channels. Kir4.1 expression was upregulated in SSKcnj16-/- rats, but the protein was predominantly localized in the cytosol in SSKcnj16-/- rats. Benzamil, but not hydrochlorothiazide or furosemide, rescued this phenotype from mortality on a high-salt diet. Supplementation of high-salt diet with increased potassium (2% KCl) prevented mortality in SSKcnj16-/- rats and prevented or mitigated hypertension in SSKcnj16-/- or control SS rats, respectively. Our results demonstrate that Kir5.1 channels are key regulators of renal salt handling in SS hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Túbulos Renales Distales/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , Cloruro de Sodio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Femenino , Furosemida/farmacología , Hidroclorotiazida/farmacología , Masculino , Mutación , Canales de Potasio de Rectificación Interna/genética , Ratas , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético/administración & dosificación , Canal Kir5.1
8.
Biochim Biophys Acta ; 1669(2): 108-15, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15893513

RESUMEN

Aldosterone induces the expression of the small G protein K-Ras. Both K-Ras and its 1st effector phosphoinositide 3-OH kinase (PI3-K) are necessary and sufficient for the activation of ENaC increasing channel open probability. The cell signaling mechanism by which K-Ras enhances ENaC activity, however, is uncertain. We demonstrate here that K-Ras significantly activates human ENaC reconstituted in Chinese hamster ovary cells approximately 3-fold. Activation in response to K-Ras was sensitive to the irreversible PI3-K inhibitor wortmannin but not the competitive LY294002 inhibitor of this phospholipid kinase. Similarly, a PI3-K 1st effector-specific Ras mutant (G12:C40) enhanced ENaC activity in a wortmannin but not LY294002 sensitive manner. Constitutively active PI3-K also enhanced ENaC activity but in a wortmannin and LY294002 sensitive manner with the effects of PI3-K and K-Ras not being additive. The activation of ENaC by PI3-K was also sensitive to intracellular GDPbetaS. Constitutively active PI3-K that is incapable of interacting with K-Ras (K227E p110alpha) acted as dominant negative with respect to the regulation of ENaC even in the presence of K-Ras. K-Ras is known to directly interact with PI3-K with aldosterone promoting this interaction. Here we demonstrate that K-Ras also interacts with ENaC through an, as yet, undetermined mechanism. We conclude that K-Ras enhances ENaC activity by localizing PI3-K near the channel and stimulating of PI3-K activity.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Canales de Sodio/metabolismo , Proteínas ras/metabolismo , Aldosterona/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Canales Epiteliales de Sodio , Proteínas de Unión al GTP/metabolismo , Humanos , Transducción de Señal/fisiología
9.
Cell Rep ; 16(1): 106-119, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27320922

RESUMEN

The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending from Ada(-/-) mice, we further discovered that prolonged elevated adenosine contributed to chronic pain behaviors in two additional independent animal models: sickle cell disease mice, a model of severe pain with limited treatment, and complete Freund's adjuvant paw-injected mice, a well-accepted inflammatory model of chronic pain. Mechanistically, we revealed that activation of adenosine A2B receptors on myeloid cells caused nociceptor hyperexcitability and promoted chronic pain via soluble IL-6 receptor trans-signaling, and our findings determined that prolonged accumulated circulating adenosine contributes to chronic pain by promoting immune-neuronal interaction and revealed multiple therapeutic targets.


Asunto(s)
Adenosina/metabolismo , Dolor Crónico/metabolismo , Sistema Nervioso/inmunología , Sistema Nervioso/patología , Receptor de Adenosina A2B/metabolismo , Adenosina/sangre , Adenosina Desaminasa/metabolismo , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/patología , Animales , Conducta Animal , Dolor Crónico/sangre , Dolor Crónico/patología , Dolor Crónico/fisiopatología , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Regulación de la Expresión Génica , Inflamación/patología , Interleucina-6/metabolismo , Ratones Noqueados , Células Mieloides/metabolismo , Sistema Nervioso/fisiopatología , Nociceptores/metabolismo , Receptores de Interleucina-6/metabolismo , Reflejo , Factor de Transcripción STAT3/metabolismo , Células Receptoras Sensoriales/patología , Transducción de Señal , Solubilidad , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA