Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Sleep Res ; : e14038, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37678806

RESUMEN

Patients with neurocognitive disorders often battle sleep disturbances. Kynurenic acid is a tryptophan metabolite of the kynurenine pathway implicated in the pathology of these illnesses. Modest increases in kynurenic acid, an antagonist at glutamatergic and cholinergic receptors, result in cognitive impairments and sleep dysfunction. We explored the hypothesis that inhibition of the kynurenic acid synthesising enzyme, kynurenine aminotransferase II, may alleviate sleep disturbances. At the start of the light phase, adult male and female Wistar rats received systemic injections of either: (i) vehicle; (ii) kynurenine (100 mg kg-1 ; i.p.); (iii) the kynurenine aminotransferase II inhibitor, PF-04859989 (30 mg kg-1 ; s.c.); or (iv) PF-04859989 and kynurenine in combination. Kynurenine and kynurenic acid levels were evaluated in the plasma and brain. Separate animals were implanted with electroencephalogram and electromyogram telemetry devices to record polysomnography, and evaluate the vigilance states wake, rapid eye movement sleep and non-rapid eye movement sleep following each treatment. Kynurenine challenge increased brain kynurenic acid and resulted in reduced rapid eye movement sleep duration, non-rapid eye movement sleep delta power and sleep spindles. PF-04859989 reduced brain kynurenic acid formation when given prior to kynurenine, prevented disturbances in rapid eye movement sleep and sleep spindles, and enhanced non-rapid eye movement sleep. Our findings suggest that reducing kynurenic acid in conditions where the kynurenine pathway is activated may serve as a potential strategy for improving sleep dynamics.

2.
Neurobiol Learn Mem ; 174: 107282, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32738461

RESUMEN

Distinct abnormalities in kynurenine pathway (KP) metabolism have been reported in various psychiatric disorders, including schizophrenia (SZ). Kynurenic acid (KYNA), a neuroactive metabolite of the KP, is elevated in individuals diagnosed with SZ and has been linked to cognitive impairments seen in the disorder. To further understand the role of KYNA in SZ etiology, we developed a prenatal insult model where kynurenine (100 mg/day) is fed to pregnant Wistar rats from embryonic day (ED) 15 to ED 22. As sex differences in the prevalence and severity of SZ have been observed, we presently investigated the impact of prenatal kynurenine exposure on KP metabolism and spatial learning and memory in male and female offspring. Specifically, brain tissue and plasma from offspring (control: ECon; kynurenine-treated: EKyn) in prepuberty (postnatal day (PD) 21), adolescence (PD 32-35), and adulthood (PD 56-85) were collected. Separate cohorts of adult offspring were tested in the Barnes maze to assess hippocampus- and prefrontal cortex-mediated learning and memory. Plasma tryptophan, kynurenine, and KYNA were unchanged between ECon and EKyn offspring across all three ages. Hippocampal and frontal cortex KYNA were elevated in male EKyn offspring only in adulthood, compared to ECon, while brain KYNA levels were unchanged in adult females. Male EKyn offspring were significantly impaired during acquisition of the Barnes maze and during reversal learning in the task. In female EKyn offspring, learning and memory remained relatively intact. Taken together, our data demonstrate that exposure to elevated kynurenine during the last week of gestation results in intriguing sex differences and further support the EKyn model as an attractive tool to study the pathophysiology of schizophrenia.


Asunto(s)
Encéfalo/efectos de los fármacos , Quinurenina/administración & dosificación , Memoria/efectos de los fármacos , Caracteres Sexuales , Aprendizaje Espacial/efectos de los fármacos , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratas Wistar , Esquizofrenia/inducido químicamente , Esquizofrenia/metabolismo
3.
Hippocampus ; 29(2): 73-77, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30311334

RESUMEN

A combination of genetic and environmental factors contributes to schizophrenia (SZ), a catastrophic psychiatric disorder with a hypothesized neurodevelopmental origin. Increases in the brain levels of the tryptophan metabolite kynurenic acid (KYNA), an endogenous antagonist of α7 nicotinic acetylcholine and NMDA receptors, have been implicated specifically in the cognitive deficits seen in persons with SZ. Here we evaluated this role of KYNA by adding the KYNA precursor kynurenine (100 mg/day) to chow fed to pregnant rat dams from embryonic day (ED) 15 to ED 22 (control: ECon; kynurenine treated: EKyn). Upon termination of the treatment, all rats received normal rodent chow until the animals were evaluated in adulthood (postnatal days 56-85). EKyn treatment resulted in increased extracellular KYNA and reduced extracellular glutamate in the hippocampus, measured by in vivo microdialysis, and caused impairments in hippocampus-dependent learning in adult rats. Acute administration of BFF816, a systemically active inhibitor of kynurenine aminotransferase II (KAT II), the major KYNA-synthesizing enzyme in the brain, normalized neurochemistry and prevented contextual memory deficits in adult EKyn animals. Collectively, these results demonstrate that acute inhibition of KYNA neosynthesis can overcome cognitive impairments that arise as a consequence of elevated brain KYNA in early brain development.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Hipocampo/efectos de los fármacos , Quinurenina/toxicidad , Trastornos de la Memoria/enzimología , Efectos Tardíos de la Exposición Prenatal/enzimología , Tiazolidinedionas/uso terapéutico , Transaminasas/antagonistas & inhibidores , Factores de Edad , Animales , Femenino , Compuestos Heterocíclicos con 3 Anillos/farmacología , Hipocampo/enzimología , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Ratas , Ratas Wistar , Tiazolidinedionas/farmacología , Transaminasas/metabolismo
4.
Dev Neurosci ; 39(6): 519-528, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29080891

RESUMEN

The kynurenine pathway (KP), the major catabolic route of tryptophan in mammals, contains several neuroactive metabolites, including kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK). KP metabolism, and especially the fate of KYNA, during pregnancy is poorly understood, yet it may play a significant role in the development of psychiatric disorders later in life. The present study was designed to investigate the prenatal features of KP metabolism in vivo, with special focus on KYNA. To this end, pregnant CD-1 mice were treated systemically with kynurenine (100 mg/kg), KYNA (10 mg/kg), or saline on embryonic day 18. As expected, administration of either kynurenine or KYNA increased KYNA levels in the maternal plasma and placenta. Maternal kynurenine treatment also raised kynurenine levels in the fetal plasma and brain, demonstrating the ability of this pivotal KP metabolite to cross the placenta and increase the levels of both KYNA and 3-HK in the fetal brain. In contrast, maternal administration of KYNA caused only a small, nonsignificant elevation in KYNA levels in fetal plasma and brain. Complementary experiments using an ex vivo placental perfusion procedure confirmed the significant transplacental transfer of kynurenine and demonstrated that only a very small fraction of maternal kynurenine is converted to KYNA in the placenta and released into the fetal compartment under physiological conditions. Jointly, these results help to clarify the contributions of the maternal circulation and the placenta to fetal KYNA in the late prenatal period.


Asunto(s)
Encéfalo/efectos de los fármacos , Ácido Quinurénico/farmacología , Quinurenina/metabolismo , Placenta/efectos de los fármacos , Animales , Encéfalo/metabolismo , Femenino , Quinurenina/análogos & derivados , Quinurenina/farmacología , Ratones , Placenta/metabolismo , Embarazo , Triptófano/metabolismo
5.
J Psychiatry Neurosci ; 41(6): 386-394, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27070351

RESUMEN

BACKGROUND: Neuroinflammatory processes are increasingly believed to participate in the pathophysiology of a number of major psychiatric diseases, including depression. Immune activation stimulates the conversion of the amino acid tryptophan to kynurenine, leading to the formation of neuroactive metabolites, such as quinolinic acid and kynurenic acid. These compounds affect glutamatergic neurotransmission, which plays a prominent role in depressive pathology. Increased tryptophan degradation along the kynurenine pathway (KP) has been proposed to contribute to disease etiology. METHODS: We used postmortem brain tissue from the ventrolateral prefrontal cortex (VLPFC) to assess tissue levels of tryptophan and KP metabolites, the expression of several KP enzymes and a series of cytokines as well as tissue pathology, including microglial activation. Tissue samples came from nonpsychiatric controls (n = 36) and individuals with depressive disorder not otherwise specified (DD-NOS, n = 45) who died of natural causes, homicide, accident, or suicide. RESULTS: We found a reduction in the enzymatic conversion of tryptophan to kynurenine, determined using the kynurenine:tryptophan ratio, and reduced messenger RNA expression of the enzymes indoleamine-2,3-dioxygenase 1 and 2 and tryptophan-2,3-dioxygenase in depressed individuals irrespective of the cause of death. These findings correlated with reductions in the expression of several cytokines, including interferon-γ and tumour necrosis factor-α. Notably, quinolinic acid levels were also lower in depressed individuals than controls. LIMITATIONS: Information on the use of antidepressants and other psychotropic medications was insufficient for statistical comparisons. CONCLUSION: Contrary to expectations, the present results indicate that depression, in the absence of medical illness or an overt inflammatory process, is associated with compromised, rather than increased, KP metabolism in the VLPFC.


Asunto(s)
Citocinas/metabolismo , Trastorno Depresivo/metabolismo , Quinurenina/metabolismo , Corteza Prefrontal/metabolismo , Adulto , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/patología , Femenino , Humanos , Inmunohistoquímica , Masculino , Reacción en Cadena de la Polimerasa , Corteza Prefrontal/patología , ARN Mensajero/metabolismo
7.
Neurobiol Stress ; 24: 100543, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37252645

RESUMEN

Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.

8.
Transl Psychiatry ; 13(1): 106, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002202

RESUMEN

Dysregulated sleep is commonly reported in individuals with neuropsychiatric disorders, including schizophrenia (SCZ) and bipolar disorder (BPD). Physiology and pathogenesis of these disorders points to aberrant metabolism, during neurodevelopment and adulthood, of tryptophan via the kynurenine pathway (KP). Kynurenic acid (KYNA), a neuroactive KP metabolite derived from its precursor kynurenine by kynurenine aminotransferase II (KAT II), is increased in the brains of individuals with SCZ and BPD. We hypothesize that elevated KYNA, an inhibitor of glutamatergic and cholinergic neurotransmission, contributes to sleep dysfunction. Employing the embryonic kynurenine (EKyn) paradigm to elevate fetal brain KYNA, we presently examined pharmacological inhibition of KAT II to reduce KYNA in adulthood to improve sleep quality. Pregnant Wistar rats were fed either kynurenine (100 mg/day)(EKyn) or control (ECon) diet from embryonic day (ED) 15 to ED 22. Adult male (N = 24) and female (N = 23) offspring were implanted with devices to record electroencephalogram (EEG) and electromyogram (EMG) telemetrically for sleep-wake data acquisition. Each subject was treated with either vehicle or PF-04859989 (30 mg/kg, s.c.), an irreversible KAT II inhibitor, at zeitgeber time (ZT) 0 or ZT 12. KAT II inhibitor improved sleep architecture maintaining entrainment of the light-dark cycle; ZT 0 treatment with PF-04859989 induced transient improvements in rapid eye movement (REM) and non-REM (NREM) sleep during the immediate light phase, while the impact of ZT 12 treatment was delayed until the subsequent light phase. PF-04859989 administration at ZT 0 enhanced NREM delta spectral power and reduced activity and body temperature. In conclusion, reducing de novo KYNA production alleviated sleep disturbances and increased sleep quality in EKyn, while also improving sleep outcomes in ECon offspring. Our findings place attention on KAT II inhibition as a novel mechanistic approach to treating disrupted sleep behavior with potential translational implications for patients with neurodevelopmental and neuropsychiatric disorders.


Asunto(s)
Encéfalo , Quinurenina , Ratas , Embarazo , Animales , Masculino , Femenino , Ratas Wistar , Quinurenina/metabolismo , Encéfalo/metabolismo , Sueño/fisiología
9.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014312

RESUMEN

Recently, a Y727C variant in the dual-specific 3',5'-cyclic nucleotide phosphodiesterase 11A (PDE11A-Y727C) was linked to increased sleep quality and reduced myopia risk in humans. Given the well-established role that the PDE11 substrates cAMP and cGMP play in eye physiology and sleep, we determined if 1) PDE11A protein is expressed in the retina or other eye segments in mouse, 2) PDE11A-Y7272C affects catalytic activity and/or subcellular compartmentalization more so than the nearby suicide-associated PDE11A-M878V variant, and 3) Pde11a deletion alters eye growth or sleep quality in male and female mice. Western blots show distinct protein expression of PDE11A4, but not PDE11A1-3, in eyes of Pde11a WT-but not KO mice-that vary by eye segment and age. In HT22 and COS-1 cells, PDE11A4-Y727C reduces PDE11A4 catalytic activity far more than PDE11A4-M878V, with both variants reducing PDE11A4-cAMP more so than PDE11A4-cGMP activity. Despite this, Pde11a deletion does not alter age-related changes in retinal or lens thickness, axial length, nor vitreous or anterior chamber depth. Further, Pde11a deletion only minimally changes refractive error and sleep quality. That said, both variants also dramatically alter the subcellular compartmentalization of human and mouse PDE11A4, an effect occurring independently of dephosphorylating PDE11A4-S117/S124 or phosphorylating PDE11A4-S162. Rather, re-compartmentalization of PDE11A4-Y727C is due to the loss of the tyrosine changing how PDE11A4 is packaged/repackaged via the trans-Golgi network. Therefore, the protective impact of the Y727C variant may reflect a gain-of-function (e.g., PDE11A4 displacing another PDE) that warrants further investigation in the context of reversing/preventing sleep disturbances or myopia.

10.
Cells ; 12(24)2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132157

RESUMEN

Recently, a Y727C variant in the dual-specific 3',5'-cyclic nucleotide phosphodiesterase 11A (PDE11A-Y727C) was linked to increased sleep quality and reduced myopia risk in humans. Given the well-established role that the PDE11 substrates cAMP and cGMP play in eye physiology and sleep, we determined if (1) PDE11A protein is expressed in the retina or other eye segments in mice, (2) PDE11A-Y7272C affects catalytic activity and/or subcellular compartmentalization more so than the nearby suicide-associated PDE11A-M878V variant, and (3) Pde11a deletion alters eye growth or sleep quality in male and female mice. Western blots show distinct protein expression of PDE11A4, but not PDE11A1-3, in eyes of Pde11a WT, but not KO mice, that vary by eye segment and age. In HT22 and COS-1 cells, PDE11A4-Y727C reduces PDE11A4 catalytic activity far more than PDE11A4-M878V, with both variants reducing PDE11A4-cAMP more so than PDE11A4-cGMP activity. Despite this, Pde11a deletion does not alter age-related changes in retinal or lens thickness or axial length, nor vitreous or anterior chamber depth. Further, Pde11a deletion only minimally changes refractive error and sleep quality. That said, both variants also dramatically alter the subcellular compartmentalization of human and mouse PDE11A4, an effect occurring independently of dephosphorylating PDE11A4-S117/S124 or phosphorylating PDE11A4-S162. Rather, re-compartmentalization of PDE11A4-Y727C is due to the loss of the tyrosine changing how PDE11A4 is packaged/repackaged via the trans-Golgi network. Therefore, the protective impact of the Y727C variant may reflect a gain-of-function (e.g., PDE11A4 displacing another PDE) that warrants further investigation in the context of reversing/preventing sleep disturbances or myopia.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas , Miopía , Humanos , Masculino , Femenino , Animales , Ratones , 3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Calidad del Sueño , Western Blotting
11.
Eur J Neurosci ; 35(10): 1605-12, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22515201

RESUMEN

Levels of kynurenic acid (KYNA), an endogenous product of tryptophan degradation, are elevated in the brain and cerebrospinal fluid of individuals with schizophrenia (SZ). This increase has been implicated in the cognitive dysfunctions seen in the disease, as KYNA is an antagonist of the α7 nicotinic acetylcholine receptor and the N-methyl-d-aspartate receptor, both of which are critically involved in cognitive processes and in a defining neurodevelopmental period in the pathophysiology of SZ. We tested the hypothesis that early developmental increases in brain KYNA synthesis might cause biochemical and functional impairments in adulthood. To this end, we stimulated KYNA formation by adding the KYNA precursor kynurenine (100 mg/day) to the chow fed to rat dams from gestational day 15 to postnatal day 21 (PD 21). This treatment raised brain KYNA levels in the offspring by 341% on PD 2 and 210% on PD 21. Rats were then fed normal chow until adulthood (PD 56-80). In the adult animals, basal levels of extracellular KYNA, measured in the hippocampus by in vivo microdialysis, were elevated (+12%), whereas extracellular glutamate levels were significantly reduced (-13%). In separate adult animals, early kynurenine treatment was shown to impair performance in two behavioral tasks linked to hippocampal function, the passive avoidance test and the Morris water maze test. Collectively, these studies introduce a novel, naturalistic rat model of SZ, and also suggest that increases in brain KYNA during a vulnerable period in brain development may play a significant role in the pathophysiology of the disease.


Asunto(s)
Trastornos del Conocimiento/inducido químicamente , Quinurenina/toxicidad , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Cromatografía Líquida de Alta Presión , Trastornos del Conocimiento/fisiopatología , Técnicas Electroquímicas , Femenino , Ácido Glutámico/metabolismo , Ácido Quinurénico/metabolismo , Quinurenina/administración & dosificación , Quinurenina/análogos & derivados , Quinurenina/sangre , Quinurenina/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Microdiálisis , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Wistar , Conducta Espacial/efectos de los fármacos
12.
Sleep ; 45(3)2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-34477210

RESUMEN

Gonadal steroids and gender are risk factors for sleep disruptions and insomnia in women. However, the relationship between ovarian steroids and sleep is poorly understood. In rodent models, estradiol (E2) suppresses sleep in females suggesting that E2 may reduce homeostatic sleep need. The current study investigates whether E2 decreases sleep need and the potential mechanisms that govern E2 suppression of sleep. Our previous findings suggest that the median preoptic nucleus (MnPO) is a key nexus for E2 action on sleep. Using behavioral, neurochemical, and pharmacological approaches, we tested whether (1) E2 influenced the sleep homeostat and (2) E2 influenced adenosine signaling in the MnPO of adult female rats. In both unrestricted baseline sleep and recovery sleep from 6-h sleep deprivation, E2 significantly reduced nonrapid eye movement (NREM) sleep-delta power, NREM-slow wave activity (NREM-SWA, 0.5-4.0 Hz), and NREM-delta energy suggesting that E2 decreases homeostatic sleep need. However, coordinated with E2-induced changes in physiological markers of homeostatic sleep was a marked increase in MnPO extracellular adenosine (a molecular marker of homeostatic sleep need) during unrestricted and recovery sleep in E2-treated but not oil control animals. While these results seemed contradictory, systemically administered E2 blocked the ability of CGS-21680 (adenosine A2A receptor agonist) microinjected into the MnPO to increase NREM sleep suggesting that E2 may block adenosine signaling. Together, these findings provide evidence that E2 may attenuate the local effects of the A2A receptors in the MnPO, which in turn may underlie estrogenic suppression of sleep behavior as well as changes in homeostatic sleep need.


Asunto(s)
Estradiol , Movimientos Oculares , Animales , Electroencefalografía , Estradiol/farmacología , Femenino , Ratas , Sueño/fisiología , Privación de Sueño/complicaciones
13.
Artículo en Inglés | MEDLINE | ID: mdl-36313065

RESUMEN

Sleep studies are imperative to recapitulate phenotypes associated with sleep loss and uncover mechanisms contributing to psychopathology. Most often, investigators manually classify the polysomnography into vigilance states, which is time-consuming, requires extensive training, and is prone to inter-scorer variability. While many works have successfully developed automated vigilance state classifiers based on multiple EEG channels, we aim to produce an automated and openaccess classifier that can reliably predict vigilance state based on a single cortical electroencephalogram (EEG) from rodents to minimize the disadvantages that accompany tethering small animals via wires to computer programs. Approximately 427 hours of continuously monitored EEG, electromyogram (EMG), and activity were labeled by a domain expert out of 571 hours of total data. Here we evaluate the performance of various machine learning techniques on classifying 10-second epochs into one of three discrete classes: paradoxical, slow-wave, or wake. Our investigations include Decision Trees, Random Forests, Naive Bayes Classifiers, Logistic Regression Classifiers, and Artificial Neural Networks. These methodologies have achieved accuracies ranging from approximately 74% to approximately 96%. Most notably, the Random Forest and the ANN achieved remarkable accuracies of 95.78% and 93.31%, respectively. Here we have shown the potential of various machine learning classifiers to automatically, accurately, and reliably classify vigilance states based on a single EEG reading and a single EMG reading.

14.
Front Psychiatry ; 12: 734984, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603109

RESUMEN

Hypofunction of glutamatergic signaling is causally linked to neurodevelopmental disorders, including psychotic disorders like schizophrenia and bipolar disorder. Kynurenic acid (KYNA) has been found to be elevated in postmortem brain tissue and cerebrospinal fluid of patients with psychotic illnesses and may be involved in the hypoglutamatergia and cognitive dysfunction experienced by these patients. As insults during the prenatal period are hypothesized to be linked to the pathophysiology of psychotic disorders, we presently utilized the embryonic kynurenine (EKyn) paradigm to induce a prenatal hit. Pregnant Wistar dams were fed chow laced with kynurenine to stimulate fetal brain KYNA elevation from embryonic day 15 to embryonic day 22. Control dams (ECon) were fed unlaced chow. Plasma and hippocampal tissue from young adult (postnatal day 56) ECon and EKyn male and female offspring were collected at the beginning of the light (Zeitgeber time, ZT 0) and dark (ZT 12) phases to assess kynurenine pathway metabolites. Hippocampal tissue was also collected at ZT 6 and ZT 18. In separate animals, in vivo microdialysis was conducted in the dorsal hippocampus to assess extracellular KYNA, glutamate, and γ-aminobutyric acid (GABA). Biochemical analyses revealed no changes in peripheral metabolites, yet hippocampal tissue KYNA levels were significantly impacted by EKyn treatment, and increased in male EKyn offspring at ZT 6. Interestingly, extracellular hippocampal KYNA levels were only elevated in male EKyn offspring during the light phase. Decreases in extracellular glutamate levels were found in the dorsal hippocampus of EKyn male and female offspring, while decreased GABA levels were present only in males during the dark phase. The current findings suggest that the EKyn paradigm may be a useful tool for investigation of sex- and time-dependent changes in hippocampal neuromodulation elicited by prenatal KYNA elevation, which may influence behavioral phenotypes and have translational relevance to psychotic disorders.

15.
Schizophr Bull ; 47(5): 1320-1330, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-33823027

RESUMEN

Dysregulation of the kynurenine pathway (KP) of tryptophan catabolism has been implicated in psychotic disorders, including schizophrenia and bipolar disorder. Kynurenic acid (KYNA) is a KP metabolite synthesized by kynurenine aminotransferases (KATs) from its biological precursor kynurenine and acts as an endogenous antagonist of N-methyl-D-aspartate and α7-nicotinic acetylcholine receptors. Elevated KYNA levels found in postmortem brain tissue and cerebrospinal fluid of patients are hypothesized to play a key role in the etiology of cognitive symptoms observed in psychotic disorders. Sleep plays an important role in memory consolidation, and sleep disturbances are common among patients. Yet, little is known about the effect of altered KP metabolism on sleep-wake behavior. We presently utilized a well-established experimental paradigm of embryonic kynurenine (EKyn) exposure wherein pregnant dams are fed a diet laced with kynurenine the last week of gestation and hypothesized disrupted sleep-wake behavior in adult offspring. We examined sleep behavior in adult male and female offspring using electroencephalogram and electromyogram telemetry and determined sex differences in sleep and arousal in EKyn offspring. EKyn males displayed reduced rapid eye movement sleep, while female EKyn offspring were hyperaroused compared to controls. We determined that EKyn males maintain elevated brain KYNA levels, while KYNA levels were unchanged in EKyn females, yet the activity levels of KAT I and KAT II were reduced. Our findings indicate that elevated prenatal kynurenine exposure elicits sex-specific changes in sleep-wake behavior, arousal, and KP metabolism.


Asunto(s)
Ácido Quinurénico/metabolismo , Efectos Tardíos de la Exposición Prenatal , Trastornos Psicóticos , Fases del Sueño/fisiología , Trastornos del Sueño-Vigilia , Vigilia/fisiología , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Electromiografía , Femenino , Ácido Quinurénico/farmacología , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Trastornos Psicóticos/metabolismo , Trastornos Psicóticos/fisiopatología , Ratas , Ratas Wistar , Caracteres Sexuales , Trastornos del Sueño-Vigilia/metabolismo , Trastornos del Sueño-Vigilia/fisiopatología , Sueño REM/fisiología
16.
Neurobiol Stress ; 12: 100204, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32258253

RESUMEN

The kynurenine pathway (KP) is the dominant pathway for tryptophan degradation in the mammalian body and emerging evidence suggests that acute episodes of sleep deprivation (SD) disrupt tryptophan metabolism via the KP. Increases in the neuroactive KP metabolite kynurenic acid (KYNA) during pregnancy may lead to a higher risk for disrupted neurodevelopment in the offspring. As pregnancy is a critical period during which several factors, including sleep disruptions, could disrupt the fetal environment, we presently explored the relationship between maternal SD and KP metabolism and immune pathways in maternal, placenta, and fetal tissues. Pregnant Wistar rat dams were sleep deprived by gentle handling for 5 h from zeitgeber time (ZT) 0 to ZT 5. Experimental cohorts included: i) controls, ii) one session of SD on embryonic day (ED) 18 or iii) three sessions of SD occurring daily on ED 16, ED 17 and ED 18. Maternal (plasma, brain), placental and fetal (plasma, brain) tissues were collected immediately after the last session of SD or after 24 h of recovery from SD. Respective controls were euthanized at ZT 5 on ED 18 or ED 19. Maternal plasma corticosterone and fetal brain KYNA were significantly elevated only after one session of SD on ED 18. Importantly, maternal plasma corticosterone levels correlated significantly with fetal brain KYNA levels. In addition, placental levels of the proinflammatory cytokines interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) were increased following maternal SD, suggesting a relationship between placental immune response to SD and fetal brain KYNA accumulation. Collectively, our results demonstrate that sleep loss during the last week of gestation can adversely impact maternal stress, placental immune function, and fetal brain KYNA levels. We introduce KYNA as a novel molecular target influenced by sleep loss during pregnancy.

17.
Glia ; 57(4): 444-53, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18803301

RESUMEN

Apolipoprotein E (apoE) has been implicated in modulating the central nervous system (CNS) inflammatory response. However, the molecular mechanisms involved in apoE-dependent immunomodulation are poorly understood. We hypothesize that apoE alters the CNS inflammatory response by signaling via low-density lipoprotein (LDL) receptors in glia. To address this hypothesis, we used a small bioactive peptide formed from the receptor-binding domain of apoE, apoE peptide (EP), to study LDL receptor signaling in microglia. To model glial activation, we treated primary mouse microglia and the microglial cell line BV2 with lipopolysaccharide (LPS) and studied two inflammatory responses: an increase in nitric oxide production (NO) and a decrease in apoE production. We found that treatment of primary microglia and BV2 cells with EP attenuated LPS-induced NO accumulation and apoE reduction in a dose-dependent manner. Using the receptor-associated protein to block ligand binding to members of the LDL receptor family, we found that EP attenuated both of these LPS-induced inflammatory responses via LDL receptors. We studied two intracellular signaling cascades associated with apoE: c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). LPS induced both ERK and JNK activation, whereas EP induced ERK activation, but drastically reduced JNK activation. Inhibition of JNK with SP600125 reduced LPS-induced NO production and apoE reduction in a dose-dependent manner. Treatment of microglia with suboptimal EP in combination with JNK inhibitor enhanced attenuation of LPS-induced NO production. These data suggest that microglial LDL receptors regulate JNK activation, which is necessary for apoE modulation of the inflammatory response.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Receptores de LDL/fisiología , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacología , Células Cultivadas , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/inmunología , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/farmacología , Ratones , Microglía/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Péptidos/farmacología , Polisacáridos/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
18.
Biochem Biophys Res Commun ; 387(3): 516-20, 2009 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-19615334

RESUMEN

Apolipoprotein E (apoE), a ligand for the low-density lipoprotein receptor family, has been implicated in modulating glial inflammatory responses and the risk of neurodegeneration associated with Alzheimer's disease. Glial cells activated by lipopolysaccharide (LPS) have decreased apoE levels and we recently showed that apoE itself can modulate the inflammatory response by reducing c-Jun N-terminal kinase (JNK) activation. Reduced JNK phosphorylation is vital to overcome the LPS-induced decrease in apoE expression, suggesting that JNK inhibition may be an effective way to increase apoE protein and protract its anti-inflammatory properties. This study investigates the impact of JNK inhibition on apoE production using two JNK inhibitors. Our work in primary glia and in vivo in mice injected with JNK inhibitor demonstrates that inhibition of JNK may be an effective way to increase apoE expression.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Apolipoproteínas E/biosíntesis , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Neuroglía/enzimología , Animales , Células Cultivadas , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Endogámicos , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
20.
Trends Neurosci ; 41(8): 491-493, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30053952

RESUMEN

Kynurenines, the major degradative products of the essential amino acid tryptophan, may play critical roles in the pathophysiology of depressive disorders. In 2014, Agudelo and colleagues reported that exercise indirectly modulates the metabolism of kynurenines in skeletal muscle, which in turn influences the brain and enhances resilience to depression.


Asunto(s)
Depresión , Quinurenina , Trastorno Depresivo , Ejercicio Físico , Humanos , Músculo Esquelético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA