Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37116210

RESUMEN

The germline-restricted chromosome (GRC) is likely present in all songbird species but differs widely in size and gene content. This extra chromosome has been described as either a microchromosome with only limited basic gene content or a macrochromosome with enriched gene functions related to female gonad and embryo development. Here, we assembled, annotated, and characterized the first micro-GRC in the blue tit (Cyanistes caeruleus) using high-fidelity long-read sequencing data. Although some genes on the blue tit GRC show signals of pseudogenization, others potentially have important functions, either currently or in the past. We highlight the GRC gene paralog BMP15, which is among the highest expressed GRC genes both in blue tits and in zebra finches (Taeniopygia guttata) and is known to play a role in oocyte and follicular maturation in other vertebrates. The GRC genes of the blue tit are further enriched for functions related to the synaptonemal complex. We found a similar functional enrichment when analyzing published data on GRC genes from two nightingale species (Luscinia spp.). We hypothesize that these genes play a role in maintaining standard maternal inheritance or in recombining maternal and paternal GRCs during potential episodes of biparental inheritance.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Femenino , Pájaros Cantores/genética , Cromosomas , Células Germinativas , Oocitos , Ovario , Passeriformes/genética
2.
Chromosoma ; 131(1-2): 77-86, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35389062

RESUMEN

Passerine birds have a supernumerary chromosome in their germ cells called the germline-restricted chromosome (GRC). The GRC was first discovered more than two decades ago in zebra finch but recent studies have suggested that it is likely present in all passerines, the most species rich avian order, encompassing more than half of all modern bird species. Despite its wide taxonomic distribution, studies on this chromosome are still scarce and limited to a few species. Here, we cytogenetically analyzed the GRC in five closely related estrildid finch species of the genus Lonchura. We show that the GRC varies enormously in size, ranging from a tiny micro-chromosome to one of the largest macro-chromosomes in the cell, not only among recently diverged species but also within species and sometimes even between germ cells of a single individual. In Lonchura atricapilla, we also observed variation in GRC copy number among male germ cells of a single individual. Finally, our analysis of hybrids between two Lonchura species with noticeably different GRC size directly supported maternal inheritance of the GRC. Our results reveal the extraordinarily dynamic nature of the GRC, which might be caused by frequent gains and losses of sequences on this chromosome leading to substantial differences in genetic composition of the GRC between and even within species. Such differences might theoretically contribute to reproductive isolation between species and thus accelerate the speciation rate of passerine birds compared to other bird lineages.


Asunto(s)
Pinzones , Passeriformes , Animales , Cromosomas/genética , Femenino , Pinzones/genética , Células Germinativas , Masculino , Passeriformes/genética
3.
Mol Ecol ; 29(15): 2904-2921, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32563209

RESUMEN

Historical factors (colonization scenarios, demographic oscillations) and contemporary processes (population connectivity, current population size) largely contribute to shaping species' present-day genetic diversity and structure. In this study, we use a combination of mitochondrial and nuclear DNA markers to understand the role of Quaternary climatic oscillations and present-day gene flow dynamics in determining the genetic diversity and structure of the newt Calotriton asper (Al. Dugès, 1852), endemic to the Pyrenees. Mitochondrial DNA did not show a clear phylogeographic pattern and presented low levels of variation. In contrast, microsatellites revealed five major genetic lineages with admixture patterns at their boundaries. Approximate Bayesian computation analyses and linear models indicated that the five lineages likely underwent separate evolutionary histories and can be tracked back to distinct glacial refugia. Lineage differentiation started around the Last Glacial Maximum at three focal areas (western, central and eastern Pyrenees) and extended through the end of the Last Glacial Period in the central Pyrenees, where it led to the formation of two more lineages. Our data revealed no evidence of recent dispersal between lineages, whereas borders likely represent zones of secondary contact following expansion from multiple refugia. Finally, we did not find genetic evidence of sex-biased dispersal. This work highlights the importance of integrating past evolutionary processes and present-day gene flow and dispersal dynamics, together with multilocus approaches, to gain insights into what shaped the current genetic attributes of amphibians living in montane habitats.


Asunto(s)
Variación Genética , Refugio de Fauna , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Repeticiones de Microsatélite/genética , Filogenia , Filogeografía , Salamandridae/genética
4.
Nat Commun ; 14(1): 4579, 2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516764

RESUMEN

The germline-restricted chromosome (GRC) of songbirds represents a taxonomically widespread example of programmed DNA elimination. Despite its apparent indispensability, we still know very little about the GRC's genetic composition, function, and evolutionary significance. Here we assemble the GRC in two closely related species, the common and thrush nightingale. In total we identify 192 genes across the two GRCs, with many of them present in multiple copies. Interestingly, the GRC appears to be under little selective pressure, with the genetic content differing dramatically between the two species and many GRC genes appearing to be pseudogenized fragments. Only one gene, cpeb1, has a complete coding region in all examined individuals of the two species and shows no copy number variation. The acquisition of this gene by the GRC corresponds with the earliest estimates of the GRC origin, making it a good candidate for the functional indispensability of the GRC in songbirds.


Asunto(s)
Pájaros Cantores , Animales , Pájaros Cantores/genética , Sistemas de Lectura Abierta , Evolución Biológica , Células Germinativas , Cromosomas
5.
Sci Rep ; 12(1): 22275, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566302

RESUMEN

Divergence in sperm phenotype and female reproductive environment may be a common source of postmating prezygotic (PMPZ) isolation between species. However, compared to other reproductive barriers it has received much less attention. In this study, we examined sperm morphology and velocity in two hybridizing passerine species, the common nightingale (Luscinia megarhynchos) and thrush nightingale (L. luscinia). In addition, we for the first time characterized a passerine female reproductive tract fluid proteome. We demonstrate that spermatozoa of the common nightingale have significantly longer and wider midpiece (proximal part of the flagellum containing mitochondria) and longer tail compared to spermatozoa of thrush nightingale. On the other hand, they have significantly shorter and narrower acrosome. Importantly, these differences did not have any effect on sperm velocity. Furthermore, the fluid from the reproductive tract of common nightingale females did not differentially affect velocity of conspecific and heterospecific sperm. Our results indicate that the observed changes in the flagellum and acrosome size are unlikely to contribute to PMPZ isolation through differential sperm velocity of conspecific and heterospecific sperm in the female reproductive tract. However, they could affect other postcopulatory processes, which might be involved in PMPZ isolation, such as sperm storage, longevity or sperm-egg interaction.


Asunto(s)
Semen , Pájaros Cantores , Animales , Masculino , Femenino , Espermatozoides , Reproducción , Inseminación
6.
Front Genet ; 12: 768987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938317

RESUMEN

Changes in chromosomal structure involving chromosomal rearrangements or copy number variation of specific sequences can play an important role in speciation. Here, we explored the chromosomal structure of two hybridizing passerine species; the common nightingale (Luscinia megarhynchos) and the thrush nightingale (Luscinia luscinia), using conventional cytogenetic approaches, immunostaining of meiotic chromosomes, fluorescence in situ hybridization as well as comparative genomic hybridization (CGH). We found that the two nightingale species show conserved karyotypes with the same diploid chromosome number of 2n = 84. In addition to standard chromosomes, both species possessed a small germline restricted chromosome of similar size as a microchromosome. Just a few subtle changes in chromosome morphology were observed between the species, suggesting that only a limited number of chromosomal rearrangements occurred after the species divergence. The interspecific CGH experiment suggested that the two nightingale species might have diverged in centromeric repetitive sequences in most macro- and microchromosomes. In addition, some chromosomes showed changes in copy number of centromeric repeats between the species. The observation of very similar karyotypes in the two nightingale species is consistent with a generally slow rate of karyotype evolution in birds. The divergence of centromeric sequences between the two species could theoretically cause meiotic drive or reduced fertility in interspecific hybrids. Nevertheless, further studies are needed to evaluate the potential role of chromosomal structural variations in nightingale speciation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA