Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Cell Biol ; 91(2): 59-66, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23527633

RESUMEN

Pyolysin (PLO) belongs to the homologous family of the cholesterol-dependent cytolysins (CDCs), which bind to cell membranes containing cholesterol to form oligomeric pores of large size. The CDC monomer structure consists of 4 domains. Among these, the C-terminal domain 4 has been implicated in membrane binding of the monomer, while the subsequent processes of oligomerization and membrane insertion have primarily been assigned to other domains of the molecule. Recombinantly expressed or proteolytic fragments that span domain 4 of the CDCs streptolysin O and perfringolysin O bind to membranes but fail to oligomerize, and they inhibit the activity of the respective wild-type toxins. We report here that the isolated domain 4 of pyolysin (PLO-D4) not only binds to membranes but also forms oligomers with itself, as well as hybrid oligomers with the full-length toxin. As expected, the pure PLO-D4 oligomers are devoid of pore-forming activity. Surprisingly, however, within hybrid oligomers, PLO-D4 not only fails to inhibit, but even amplifies the hemolytic activity of the full-length toxin, to an extent similar to that of doubling the amount of the full-length toxin alone. We propose that this amplification may be related to the kinetics of the oligomerization reaction. Overall, our findings indicate a greater role of domain 4 in the oligomerization of CDCs than previously demonstrated.


Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/química , Membrana Celular/efectos de los fármacos , Colesterol/química , Eritrocitos/efectos de los fármacos , Proteínas Hemolisinas/química , Lípidos de la Membrana/química , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacología , Membrana Celular/química , Eritrocitos/química , Escherichia coli/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Hemólisis/efectos de los fármacos , Cinética , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Oveja Doméstica , Estreptolisinas/química
2.
Biochem Cell Biol ; 90(6): 709-17, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23016571

RESUMEN

The bacterial toxin pyolysin (PLO) belongs to the family of cholesterol-dependent cytolysins (CDCs), which form large, ring-shaped oligomeric pores in cholesterol-containing membranes. Monomeric CDC molecules have a structure of four domains, with domains 2 and 3 packed against each other. After binding to target membranes containing cholesterol, toxin monomers oligomerize into pre-pore complexes. Trans-membrane pores form when the pre-pores insert into the lipid bilayer. Membrane insertion requires each subunit in the pre-pore to undergo a significant change in conformation, including the separation of domains 2 and 3. We here characterize a pyolysin mutant with an engineered disulfide bond between domains 2 and 3. The disulfide-tethered mutant binds to membranes but does not form oligomers. When mixed with wild type PLO, the two proteins form hybrid oligomers, which are reduced in size and arc-shaped rather than ring-shaped. With equimolar mixtures or the disulfide mutant in slight excess, the hybrid oligomers retain pore-forming activity, while a larger excess of the mutant suppresses pore formation. These results support a "partially cooperative" mode of protein activity, in which a limited number of functional subunits within an oligomer have to cooperate to initiate membrane insertion and pore formation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Disulfuros/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Mutación , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Citotoxinas/química , Citotoxinas/genética , Citotoxinas/metabolismo , Disulfuros/metabolismo , Proteínas Hemolisinas/metabolismo , Polimerizacion , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
3.
J Struct Biol ; 173(1): 38-45, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20682347

RESUMEN

Using an established organic solvent injection procedure for the preparation of aqueous cholesterol microcrystal suspensions, it has now been shown that a new, hollow, cylindrical, tightly-coiled, multi-bilayer form of cholesterol can be generated, termed the cochleate cylinder. Cholesterol cochleate cylinders are formed in larger numbers at intermediate temperatures (40-75°C) but are not formed at 100°C. The structure of the cholesterol microcrystals and cochleate cylinders is shown in negatively stained electron micrographs. Oligomerization and attachment of pyolysin to cholesterol microcrystals and cochleate cylinders is shown, as is the attachment of the pyolysin "cholesterol-binding" domain 4 (D4) fragment. The bound D4 domain forms a linear array on the two planar surfaces and edges of the cholesterol microcrystals and a quasi helical array on the surface of the cochleate cylinders. Little evidence has been obtained to support the possibility that interaction or hetero-oligomerization can occur between intact pyolysin and the pyolysin D4 fragment on the surface of cholesterol microcrystals. Using immobilized cholesterol crystals attached to a carbon support film, single-sided linear labelling of the cholesterol surface with pyolysin D4 has been achieved, which correlates well with the images from the microcrystal suspensions and our earlier data using non-cytolytic streptolysin O mutants.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Colesterol/química , Colesterol/metabolismo , Proteínas Hemolisinas/metabolismo , Conformación Molecular , Coloración y Etiquetado/métodos , Cartilla de ADN/genética , Microscopía Electrónica de Transmisión , Polimerizacion , Temperatura
4.
ACS Nano ; 15(12): 18608-18623, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34910476

RESUMEN

Nanotechnology has important roles to play in international efforts in sustainability. We discuss how current and future capabilities in nanotechnology align with and support the United Nations' Sustainable Development Goals. We argue that, as a field, we can accelerate the progress toward these goals both directly through technological solutions and through our special interdisciplinary skills in communication and tackling difficult challenges. We discuss the roles of targeting solutions, technology translation, the circular economy, and a number of examples from national efforts around the world in reaching these goals. We have formed a network of leading nanocenters to address these challenges globally and seek to recruit others to join us.


Asunto(s)
Desarrollo Sostenible , Naciones Unidas , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA