Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001606

RESUMEN

Fluorescence in biological systems is usually associated with the presence of aromatic groups. Here, by employing a combined experimental and computational approach, we show that specific hydrogen bond networks can significantly affect fluorescence. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared with L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby significantly decrease nonradiative transition probabilities. Our findings open the door to the design of new photoactive materials with biophotonic applications.


Asunto(s)
Amoníaco/química , Glutamina/química , Péptidos/química , Teoría Funcional de la Densidad , Fluorescencia , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Óptica y Fotónica/métodos
2.
J Chem Phys ; 150(4): 041707, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709242

RESUMEN

Using first principles molecular dynamics simulations, we probe the electrochemical double layer formed at the interface between the hematite surface and water. We consider two terminations of the (001) surface, viz., the fully hydroxylated (OH) and the stoichiometric (FeO3Fe) termination. We explicitly incorporate the counterions (Na+ and F-) in the solution, and model both specific and nonspecific adsorption of F- ions. We find that F- ions prefer to bind directly to the Fe ions (specific adsorption), with a substantial energy gain (0.75 eV/ion). We investigate the effect of the interface and the counterions on the dipole of individual water molecules. We find significant deviations of +0.2/-0.15 D for dipoles of the first solvation shell water molecules of F-/Na+ ions, respectively. Additionally, the hydration layers at the interface show an enhancement in the dipole moment resulting from stronger hydrogen bonding interactions between the water molecules and surface charged species. Furthermore, we analyze the electrostatic potential profile at the solid/liquid interface as a function of the kind of counterion present in the double layer and compute the capacitance of the compact (Helmholtz) layer. We find that our results (40.3 ± 3.5 µF/cm2 for the OH termination and 51 ± 5 µF/cm2 for the FeO3Fe termination) compare favorably with values reported by potentiometric titration based experimental studies (10-100 µF/cm2).

3.
Angew Chem Int Ed Engl ; 53(9): 2504-7, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24481600

RESUMEN

Isorhodopsin is the visual pigment analogue of rhodopsin. It shares the same opsin environment but it embeds 9-cis retinal instead of 11-cis. Its photoisomerization is three times slower and less effective. The mechanistic rationale behind this observation is revealed by combining high-level quantum-mechanical/molecular-mechanical simulations with ultrafast optical spectroscopy with sub-20 fs time resolution and spectral coverage extended to the near-infrared. Whereas in rhodopsin the photoexcited wavepacket has ballistic motion through a single conical intersection seam region between the ground and excited states, in isorhodopsin it branches into two competitive deactivation pathways involving distinct conical intersection funnels. One is rapidly accessed but unreactive. The other is slower, as it features extended steric interactions with the environment, but it is productive as it follows forward bicycle pedal motion.


Asunto(s)
Rodopsina/química , Diterpenos , Isomerismo , Modelos Moleculares , Procesos Fotoquímicos , Teoría Cuántica , Retinaldehído/química , Análisis Espectral
4.
ACS Nano ; 17(6): 5974-5983, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36881865

RESUMEN

Transition-metal phthalocyanine molecules have attracted considerable interest in the context of spintronics device development due to their amenability to diverse bonding regimes and their intrinsic magnetism. The latter is highly influenced by the quantum fluctuations that arise at the inevitable metal-molecule interface in a device architecture. In this study, we have systematically investigated the dynamical screening effects in phthalocyanine molecules hosting a series of transition-metal ions (Ti, V, Cr, Mn, Fe, Co, and Ni) in contact with the Cu(111) surface. Using comprehensive density functional theory plus Anderson's Impurity Model calculations, we show that the orbital-dependent hybridization and electron correlation together result in strong charge and spin fluctuations. While the instantaneous spin moments of the transition-metal ions are near atomic-like, we find that screening gives rise to considerable lowering or even quenching of these. Our results highlight the importance of quantum fluctuations in metal-contacted molecular devices, which may influence the results obtained from theoretical or experimental probes, depending on their possibly material-dependent characteristic sampling time-scales.

5.
J Phys Chem Lett ; 13(32): 7462-7468, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35930807

RESUMEN

Water is the matrix of life and serves as a solvent for numerous physical and chemical processes. The origins of the nature of inhomogeneities that exist in liquid water and the time scales over which they occur remains an open question. Here, we report femtosecond elastic second harmonic scattering (fs-ESHS) of liquid water in comparison to an isotropic liquid (CCl4) and show that water is indeed a nonuniform liquid. The coherent fs-ESHS intensity was interpreted, using molecular dynamics simulations, as arising from charge density fluctuations with enhanced nanoscale polarizabilities around transient voids having an average lifetime of 300 fs. Although voids were also present in CCl4, they were not characterized by hydrogen bond defects and did not show strong polarizability fluctuations, leading to fs-ESHS of an isotropic liquid. The voids increased in number at higher temperatures above room temperature, in agreement with the fs-ESHS results.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Enlace de Hidrógeno , Agua/química
6.
ACS Appl Mater Interfaces ; 13(4): 5228-5234, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33470108

RESUMEN

5d metals are used in electronics because of their high spin-orbit coupling (SOC) leading to efficient spin-electric conversion. When C60 is grown on a metal, the electronic structure is altered due to hybridization and charge transfer. In this work, we measure the spin Hall magnetoresistance for Pt/C60 and Ta/C60, finding that they are up to a factor of 6 higher than those for pristine metals, indicating a 20-60% increase in the spin Hall angle. At low fields of 1-30 mT, the presence of C60 increased the anisotropic magnetoresistance by up to 700%. Our measurements are supported by noncollinear density functional theory calculations, which predict a significant SOC enhancement by C60 that penetrates through the Pt layer, concomitant with trends in the magnetic moment of transport electrons acquired via SOC and symmetry breaking. The charge transfer and hybridization between the metal and C60 can be controlled by gating, so our results indicate the possibility of dynamically modifying the SOC of thin metals using molecular layers. This could be exploited in spin-transfer torque memories and pure spin current circuits.

7.
iScience ; 24(7): 102695, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34258546

RESUMEN

Luminescence of biomolecules in the visible range of the spectrum has been experimentally observed upon aggregation, contrary to their monomeric state. However, the physical basis for this phenomenon is still elusive. Here, we systematically examine all coded amino acids to provide non-biased empirical insights. Several amino acids, including non-aromatic, show intense visible luminescence. Lysine crystals display the highest signal, whereas the very chemically similar non-coded ornithine does not, implying a role for molecular packing rather than the chemical characteristics. Furthermore, cysteine shows luminescence that is indeed crystal packing dependent as repeated rearrangements between two crystal structures result in a reversible on-off optical transition. In addition, ultrafast lifetime decay is experimentally validated, corroborating a recently raised hypothesis regarding the governing role of nπ∗ states in the emission formation. Collectively, our study supports that electronic interactions between non-fluorescent, non-absorbing molecules at the monomeric state may result in reversible optically active states by the formation of supramolecular fluorophores.

8.
Nat Commun ; 11(1): 901, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060273

RESUMEN

The origin of the apparent negative charge at hydrophobic-water interfaces has fueled debates in the physical chemistry community for decades. The most common interpretation given to explain this observation is that negatively charged hydroxide ions (OH-) bind strongly to the interfaces. Using first principles calculations of extended air-water and oil-water interfaces, we unravel a mechanism that does not require the presence of OH-. Small amounts of charge transfer along hydrogen bonds and asymmetries in the hydrogen bond network due to topological defects can lead to the accumulation of negative surface charge at both interfaces. For water near oil, some spillage of electron density into the oil phase is also observed. The computed surface charge densities at both interfaces is approximately [Formula: see text] in agreement with electrophoretic experiments. We also show, using an energy decomposition analysis, that the electronic origin of this phenomena is rooted in a collective polarization/charge transfer effect.

9.
Front Chem ; 7: 210, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024896

RESUMEN

We report a combined non-local (PBE-TC-LRC) Density Functional Theory (DFT) and linear-response time-dependent DFT (LR-TDDFT) study of the structural, electronic, and optical properties of the cation-vacancy based defects in aluminosilicate (AlSi) imogolite nanotubes (Imo-NTs) that have been recently proposed on the basis of Nuclear Magnetic Resonance (NMR) experiments. Following numerical determination of the smallest AlSi Imo-NT model capable of accommodating the defect-induced relaxation with negligible finite-size errors, we analyse the defect-induced structural deformations in the NTs and ensuing changes in the NTs' electronic structure. The NMR-derived defects are found to introduce both shallow and deep occupied states in the pristine NTs' band gap (BG). These BG states are found to be highly localized at the defect site. No empty defect-state is modeled for any of the considered systems. LR-TDDFT simulation of the defects reveal increased low-energy optical absorbance for all but one defects, with the appearance of optically active excitations at energies lower than for the defect-free NT. These results enable interpretation of the low-energy tail in the experimental UV-vis spectra for AlSi NTs as being due to the defects. Finally, the PBE-TC-LRC-approximated exciton binding energy for the defects' optical transitions is found to be substantially lower (up to 0.8 eV) than for the pristine defect-free NT's excitations (1.1 eV).

10.
Nat Commun ; 9(1): 2033, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29789570

RESUMEN

Determination of the atomic structure of inorganic single-walled nanotubes with complex stoichiometry remains elusive due to the too many atomic coordinates to be fitted with respect to X-ray diffractograms inherently exhibiting rather broad features. Here we introduce a methodology to reduce the number of fitted variables and enable resolution of the atomic structure for inorganic nanotubes with complex stoichiometry. We apply it to recently synthesized methylated aluminosilicate and aluminogermanate imogolite nanotubes of nominal composition (OH)3Al2O3Si(Ge)CH3. Fitting of X-ray scattering diagrams, supported by Density Functional Theory simulations, reveals an unexpected rolling mode for these systems. The transferability of the approach opens up for improved understanding of structure-property relationships of inorganic nanotubes to the benefit of fundamental and applicative research in these systems.

11.
Adv Sci (Weinh) ; 4(2): 1600153, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28251044

RESUMEN

Linear-scaling density functional theory simulation of methylated imogolite nanotubes (NTs) elucidates the interplay between wall-polarization, bands separation, charge-transfer excitation, and tunable electrostatics inside and outside the NT-cavity. The results suggest that integration of polarization-enhanced selective photocatalysis and chemical separation into one overall dipole-free material should be possible. Strategies are proposed to increase the NT polarization for maximally enhanced electron-hole separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA