Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894827

RESUMEN

Helicobacter pylori is a leading cause of chronic gastric inflammation, generally associated with gastritis and adenocarcinoma. Activation of the NF-κB pathway mainly contributes to the inflammatory phenotype observed in H. pylori infection in humans and experimental models. Since the gastric epithelium undergoes rapid turnover, inflammation and pathogenicity of H. pylori result from early phase and chronically activated pathways. In the present study we investigated the early host response to H. pylori in non-tumoral human gastric epithelial cells (GES-1). To dissect the pathogen-specific mechanisms we also examined the response to tumor necrosis factor (TNF), a prototypical cytokine. By analyzing the activation state of NF-κB signaling, cytokine expression and secretion, and the transcriptome, we found that the inflammatory response of GES-1 cells to H. pylori and TNF results from activation of multiple pathways and transcription factors, e.g., NF-κB and CCAAT/enhancer-binding proteins (CEBPs). By comparing the transcriptomic profiles, we found that H. pylori infection induces a less potent inflammatory response than TNF but affects gene transcription to a greater extent by specifically inducing transcription factors such as CEBPß and numerous zinc finger proteins. Our study provides insights on the cellular pathways modulated by H. pylori in non-tumoral human gastric cells unveiling new potential targets.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , FN-kappa B/metabolismo , Infecciones por Helicobacter/complicaciones , Células Epiteliales/metabolismo , Inflamación/metabolismo , Mucosa Gástrica/metabolismo , Citocinas/metabolismo
2.
J Biol Chem ; 297(6): 101313, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34673027

RESUMEN

Lipopolysaccharide (LPS) is an essential glycolipid that covers the surface of gram-negative bacteria. The transport of LPS involves a dedicated seven-protein transporter system called the lipopolysaccharide transport system (Lpt) machinery that physically spans the entire cell envelope. The LptB2FG complex is an ABC transporter that hydrolyzes ATP to extract LPS from the inner membrane for transport to the outer membrane. Here, we extracted LptB2FG directly from the inner membrane with its original lipid environment using styrene-maleic acid polymers. We found that styrene-maleic acid polymers-LptB2FG in nanodiscs display not only ATPase activity but also a previously uncharacterized adenylate kinase (AK) activity, as it catalyzed phosphotransfer between two ADP molecules to generate ATP and AMP. The ATPase and AK activities of LptB2FG were both stimulated by the interaction on the periplasmic side with the periplasmic LPS transport proteins LptC and LptA and inhibited by the presence of the LptC transmembrane helix. We determined that the isolated ATPase module (LptB) had weak AK activity in the absence of transmembrane proteins LptF and LptG, and one mutation in LptB that weakens its affinity for ADP led to AK activity similar to that of fully assembled complex. Thus, we conclude that LptB2FG is capable of producing ATP from ADP, depending on the assembly of the Lpt bridge, and that this AK activity might be important to ensure efficient LPS transport in the fully assembled Lpt system.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenilato Quinasa/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/metabolismo , Adenosina Trifosfato/metabolismo , Transporte Biológico , Modelos Moleculares
3.
Mol Microbiol ; 116(1): 329-342, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33660879

RESUMEN

The integrity of the cell envelope of E. coli relies on the concerted activity of multi-protein machineries that synthesize the peptidoglycan (PG) and the outer membrane (OM). Our previous work found that the depletion of lipopolysaccharide (LPS) export to the OM induces an essential PG remodeling process involving LD-transpeptidases (LDTs), the glycosyltransferase function of PBP1B and the carboxypeptidase PBP6a. Consequently, cells with defective OM biogenesis lyse if they lack any of these PG enzymes. Here we report that the morphological defects, and lysis associated with a ldtF mutant with impaired LPS transport, are alleviated by the loss of the predicted OM-anchored lipoprotein ActS (formerly YgeR). We show that ActS is an inactive member of LytM-type peptidoglycan endopeptidases due to a degenerated catalytic domain. ActS is capable of activating all three main periplasmic peptidoglycan amidases, AmiA, AmiB, and AmiC, which were previously reported to be activated only by EnvC and/or NlpD. Our data also suggest that in vivo ActS preferentially activates AmiC and that its function is linked to cell envelope stress.


Asunto(s)
Membrana Externa Bacteriana/fisiología , Carboxipeptidasas/metabolismo , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Carboxipeptidasas/genética , Membrana Celular/fisiología , Pared Celular/metabolismo , Endopeptidasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Lipopolisacáridos/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Plásmidos/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Estrés Fisiológico/fisiología
4.
Bioorg Chem ; 112: 104876, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33845337

RESUMEN

We describe the development of an on-cell NMR method for the rapid screening of FimH ligands and the structural identification of ligand binding epitopes. FimH is a mannose-binding bacterial adhesin expressed at the apical end of type 1 pili of uropathogenic bacterial strains and responsible for their d-mannose sensitive adhesion to host mammalian epithelial cells. Because of these properties, FimH is a key virulence factor and an attractive therapeutic target for urinary tract infection. We prepared synthetic d-mannose decorated dendrimers, we tested their ability to prevent the FimH-mediated yeast agglutination, and thus we used the compounds showing the best inhibitory activity as models of FimH multivalent ligands to set up our NMR methodology. Our experimental protocol, based on on-cell STD NMR techniques, is a suitable tool for the screening and the epitope mapping of FimH ligands aimed at the development of new antiadhesive and diagnostic tools against urinary tract infection pathogens. Notably, the study is carried out in a physiological environment, i.e. at the surface of living pathogen cells expressing FimH.


Asunto(s)
Dendrímeros/farmacología , Proteínas Fimbrias/antagonistas & inhibidores , Manosa/farmacología , Adhesinas de Escherichia coli/metabolismo , Dendrímeros/síntesis química , Dendrímeros/química , Relación Dosis-Respuesta a Droga , Proteínas Fimbrias/metabolismo , Ligandos , Espectroscopía de Resonancia Magnética , Manosa/síntesis química , Manosa/química , Estructura Molecular , Relación Estructura-Actividad
5.
Proc Natl Acad Sci U S A ; 115(42): 10786-10791, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30275297

RESUMEN

The peptidoglycan (PG) layer stabilizes the bacterial cell envelope to maintain the integrity and shape of the cell. Penicillin-binding proteins (PBPs) synthesize essential 4-3 cross-links in PG and are inhibited by ß-lactam antibiotics. Some clinical isolates and laboratory strains of Enterococcus faecium and Escherichia coli achieve high-level ß-lactam resistance by utilizing ß-lactam-insensitive LD-transpeptidases (LDTs) to produce exclusively 3-3 cross-links in PG, bypassing the PBPs. In E. coli, other LDTs covalently attach the lipoprotein Lpp to PG to stabilize the envelope and maintain the permeability barrier function of the outermembrane. Here we show that subminimal inhibitory concentration of copper chloride sensitizes E. coli cells to sodium dodecyl sulfate and impair survival upon LPS transport stress, indicating reduced cell envelope robustness. Cells grown in the presence of copper chloride lacked 3-3 cross-links in PG and displayed reduced covalent attachment of Braun's lipoprotein and reduced incorporation of a fluorescent d-amino acid, suggesting inhibition of LDTs. Copper dramatically decreased the minimal inhibitory concentration of ampicillin in E. coli and E. faecium strains with a resistance mechanism relying on LDTs and inhibited purified LDTs at submillimolar concentrations. Hence, our work reveals how copper affects bacterial cell envelope stability and counteracts LDT-mediated ß-lactam resistance.


Asunto(s)
Aminoaciltransferasas/antagonistas & inhibidores , Cobre/farmacología , Enterococcus faecium/enzimología , Escherichia coli/enzimología , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Resistencia betalactámica/efectos de los fármacos , Antibacterianos/farmacología , Pared Celular/química , Pared Celular/metabolismo , Enterococcus faecium/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Especificidad por Sustrato , Oligoelementos/farmacología , beta-Lactamas/farmacología
6.
Subcell Biochem ; 92: 9-37, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214983

RESUMEN

Gram-negative bacteria have an outer membrane that is positioned at the frontline of the cell's interaction with the environment and that serves as a barrier against noxious molecules including many antibiotics. This protective function mainly relies on lipopolysaccharide, a complex glycolipid located in the outer leaflet of the outer membrane. In this chapter we will first summarize lipopolysaccharide structure, functions and biosynthetic pathway and then we will discuss how it is transported and assembled to the cell surface. This is a remarkably complex process, as amphipathic lipopolysaccharide molecules must traverse three different cellular compartments to reach their final destination.


Asunto(s)
Membrana Celular/metabolismo , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/metabolismo , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/metabolismo , Transporte Biológico
7.
Chembiochem ; 20(23): 2911-2915, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31216375

RESUMEN

Biofilm formation by bacterial pathogens is a hallmark of chronic infections and is associated to increased antibiotic tolerance that makes pathogens difficult to eradicate with conventional antibiotic therapies. Infections caused by Pseudomonas aeruginosa are of great concern, especially for immunocompromised and cystic fibrosis patients. P. aeruginosa lectins LecA and LecB are virulence factors and play a key role in establishing biofilm; therefore, inhibition of the function of these proteins has potential in dismantling the bacterium from the protective biofilm environment and in restoring the activity of antibiotics. Here, we report the NMR characterization of the binding of a galactose-based dendrimer (Gal18) to LecA. Moreover, we demonstrate the activity of the Gal18 molecule in inhibiting P. aeruginosa biofilm formation in vitro.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Dendrímeros/farmacología , Galactósidos/farmacología , Antibacterianos/síntesis química , Dendrímeros/síntesis química , Galactósidos/síntesis química , Ligandos , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología
8.
Nanotechnology ; 30(29): 295702, 2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31025630

RESUMEN

Antibacterial treatment is an essential issue in many diverse fields, from medical device treatments (for example prostheses coating) to food preservation. However, there is a need of novel and light-weight materials with high antibacterial efficiency (preferably due to the physical activation). Utilization of photo-thermally active nanoparticles can lead to novel and re-usable materials that can be remotely activated on-demand to thermally eradicate bacteria and mitigate biofilm formation, therefore meeting the above challenge. In this study polyvinyl alcohol (PVA) hydrogel films containing non-toxic and highly photo-thermally active Prussian blue (PB) nanoparticles were fabricated. The confocal microscopy studies indicated a uniform nanoparticle distribution and a low degree of aggregation. Upon near-infrared (NIR; 700 and 800 nm) light irradiation of PVA-PB films, the local temperature increases rapidly and reaches a plateau (up to ΔT â‰… 78 °C), within ≈6-10 s under relatively low laser intensities, I â‰… 0.3 W cm-2. The high and localized increase of temperature on the fabricated films resulted in an efficient antibacterial effect on Pseudomonas aeruginosa (P. aeruginosa) bacteria. In addition, the localized photo-thermal effect was also sufficient to substantially mitigate biofilms growth.


Asunto(s)
Antibacterianos/síntesis química , Biopelículas/efectos de los fármacos , Ferrocianuros/química , Nanopartículas/química , Fototerapia/métodos , Alcohol Polivinílico/química , Ferrocianuros/farmacología , Calor , Rayos Láser , Terapia por Luz de Baja Intensidad/métodos , Alcohol Polivinílico/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología
9.
J Bacteriol ; 200(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29109183

RESUMEN

In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane (OM), preventing the entry of toxic molecules, such as detergents and antibiotics. LPS is transported from the inner membrane (IM) to the OM by the Lpt multiprotein machinery. Defects in LPS transport compromise LPS assembly at the OM and result in increased antibiotic sensitivity. LptA is a key component of the Lpt machine that interacts with the IM protein LptC and chaperones LPS through the periplasm. We report here the construction of lptA41, a quadruple mutant in four conserved amino acids potentially involved in LPS or LptC binding. Although viable, the mutant displays increased sensitivity to several antibiotics (bacitracin, rifampin, and novobiocin) and the detergent SDS, suggesting that lptA41 affects LPS transport. Indeed, lptA41 is defective in Lpt complex assembly, and its lipid A carries modifications diagnostic of LPS transport defects. We also selected and characterized two phenotypic bacitracin-resistant suppressors of lptA41 One mutant, in which only bacitracin sensitivity is suppressed, harbors a small in-frame deletion in mlaA, which codes for an OM lipoprotein involved in maintaining OM asymmetry by reducing accumulation of phospholipids in the outer leaflet. The other mutant, in which bacitracin, rifampin, and SDS sensitivity is suppressed, harbors an additional amino acid substitution in LptA41 and a nonsense mutation in opgH, encoding a glycosyltransferase involved in periplasmic membrane-derived oligosaccharide synthesis. Characterization of the suppressor mutants highlights different strategies adopted by the cell to overcome OM defects caused by impaired LPS transport.IMPORTANCE Lipopolysaccharide (LPS) is the major constituent of the outer membrane (OM) of most Gram-negative bacteria, forming a barrier against antibiotics. LPS is synthesized at the inner membrane (IM), transported across the periplasm, and assembled at the OM by the multiprotein Lpt complex. LptA is the periplasmic component of the Lpt complex, which bridges IM and OM and ferries LPS across the periplasm. How the cell coordinates the processes involved in OM biogenesis is not completely understood. We generated a mutant partially defective in lptA that exhibited increased sensitivity to antibiotics and selected for suppressors of the mutant. The analysis of two independent suppressors revealed different strategies adopted by the cell to overcome defects in LPS biogenesis.


Asunto(s)
Proteínas Portadoras/genética , Permeabilidad de la Membrana Celular , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Lipopolisacáridos/metabolismo , Supresión Genética , Sustitución de Aminoácidos , Bacitracina/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Glicosiltransferasas/genética , Lípido A/metabolismo , Proteínas de la Membrana/metabolismo , Rifampin/farmacología , Dodecil Sulfato de Sodio/farmacología
10.
J Biol Chem ; 292(44): 17981-17990, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28878019

RESUMEN

The outer membrane (OM) of Gram-negative is a unique lipid bilayer containing LPS in its outer leaflet. Because of the presence of amphipathic LPS molecules, the OM behaves as an effective permeability barrier that makes Gram-negative bacteria inherently resistant to many antibiotics. This review focuses on LPS biogenesis and discusses recent advances that have contributed to our understanding of how this complex molecule is transported across the cellular envelope and is assembled at the OM outer leaflet. Clearly, this knowledge represents an important platform for the development of novel therapeutic options to manage Gram-negative infections.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacterias Gramnegativas/metabolismo , Lipopolisacáridos/metabolismo , Modelos Biológicos , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transporte Biológico , Conformación de Carbohidratos , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/química , Conformación Proteica
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1451-1460, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27760389

RESUMEN

The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer containing a unique glycolipid, lipopolysaccharide (LPS) in its outer leaflet. LPS molecules confer to the OM peculiar permeability barrier properties enabling Gram-negative bacteria to exclude many toxic compounds, including clinically useful antibiotics, and to survive harsh environments. Transport of LPS poses several problems to the cells due to the amphipatic nature of this molecule. In this review we summarize the current knowledge on the LPS transport machinery, discuss the challenges associated with this process and present the solutions that bacterial cells have evolved to address the problem of LPS transport and assembly at the cell surface. Finally, we discuss how knowledge on LPS biogenesis can be translated for the development of novel antimicrobial therapies. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Bacterias Gramnegativas/metabolismo , Lipogénesis , Lipopolisacáridos/biosíntesis , Proteínas de Transporte de Membrana/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Transporte Biológico , Lipopolisacáridos/química , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
12.
J Bacteriol ; 198(16): 2192-203, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27246575

RESUMEN

UNLABELLED: The assembly of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) requires the transenvelope Lpt (lipopolysaccharide transport) complex, made in Escherichia coli of seven essential proteins located in the inner membrane (IM) (LptBCFG), periplasm (LptA), and OM (LptDE). At the IM, LptBFG constitute an unusual ATP binding cassette (ABC) transporter, composed by the transmembrane LptFG proteins and the cytoplasmic LptB ATPase, which is thought to extract LPS from the IM and to provide the energy for its export across the periplasm to the cell surface. LptC is a small IM bitopic protein that binds to LptBFG and recruits LptA via its N- and C-terminal regions, and its role in LPS export is not completely understood. Here, we show that the expression level of lptB is a critical factor for suppressing lethality of deletions in the C-terminal region of LptC and the functioning of a hybrid Lpt machinery that carries Pa-LptC, the highly divergent LptC orthologue from Pseudomonas aeruginosa We found that LptB overexpression stabilizes C-terminally truncated LptC mutant proteins, thereby allowing the formation of a sufficient amount of stable IM complexes to support growth. Moreover, the LptB level seems also critical for the assembly of IM complexes carrying Pa-LptC which is otherwise defective in interactions with the E. coli LptFG components. Overall, our data suggest that LptB and LptC functionally interact and support a model whereby LptB plays a key role in the assembly of the Lpt machinery. IMPORTANCE: The asymmetric outer membrane (OM) of Gram-negative bacteria contains in its outer leaflet an unusual glycolipid, the lipopolysaccharide (LPS). LPS largely contributes to the peculiar permeability barrier properties of the OM that prevent the entry of many antibiotics, thus making Gram-negative pathogens difficult to treat. In Escherichia coli the LPS transporter (the Lpt machine) is made of seven essential proteins (LptABCDEFG) that form a transenvelope complex. Here, we show that increased expression of the membrane-associated ABC protein LptB can suppress defects of LptC, which participates in the formation of the periplasmic bridge. This reveals functional interactions between these two components and supports a role of LptB in the assembly of the Lpt machine.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Transporte Biológico/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipopolisacáridos/genética , Proteínas de la Membrana/genética , Plásmidos
13.
Biochim Biophys Acta ; 1854(10 Pt A): 1451-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26123264

RESUMEN

Lipopolysaccharide (LPS) is an essential glycolipid of the outer membrane (OM) of Gram-negative bacteria with a tripartite structure: lipid A, oligosaccharide core and O antigen. Seven essential LPS-transport proteins (LptABCDEFG) move LPS to the cell surface. Lpt proteins are linked by structural homology, featuring a ß-jellyroll domain that mediates protein-protein interactions and LPS binding. Analysis of LptA-LPS interaction by fluorescence spectroscopy is used here to evaluate the contribution of each LPS moiety in protein-ligand interactions, comparing the wild-type (wt) protein to the I36D mutant. In addition to a crucial role of lipid A, an unexpected contribution emerges for the core region in recognition and binding of Lpt proteins.


Asunto(s)
Proteínas Portadoras/química , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/química , Lipopolisacáridos/química , Mutación , Proteínas Recombinantes de Fusión/química , Sustitución de Aminoácidos , Naftalenosulfonatos de Anilina , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Transporte Biológico , Secuencia de Carbohidratos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Escherichia coli K12/química , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Isoleucina/química , Isoleucina/metabolismo , Ligandos , Lipopolisacáridos/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Fluorescencia
14.
Chembiochem ; 15(5): 734-42, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24677607

RESUMEN

Lipopolysaccharide (LPS), the main cell-surface molecular constituent of Gram-negative bacteria, is synthesized in the inner membrane (IM) and transported to the outer membrane (OM) by the Lpt (lipopolysaccharide transport) machinery. Neosynthesized LPS is first flipped by MsbA across the IM, then transported to the OM by seven Lpt proteins located in the IM (LptBCFG), in the periplasm (LptA), and in the OM (LptDE). A functional OM is essential to bacterial viability and requires correct placement of LPS in the outer leaflet. Therefore, LPS biogenesis represents an ideal target for the development of novel antibiotics against Gram-negative bacteria. Although the structures of Lpt proteins have been elucidated, little is known about the mechanism of LPS transport, and few data are available on Lpt­LPS binding. We report here the first determination of the thermodynamic and kinetic parameters of the interaction between LptC and a fluorescent lipo-oligosaccharide (fLOS) in vitro. The apparent dissociation constant (Kd) of the fLOS­LptC interaction was evaluated by two independent methods. The first was based on fLOS capture by resin-immobilized LptC; the second used quenching of LptC intrinsic fluorescence by fLOS in solution. The Kd values by the two methods (71.4 and 28.8 µm, respectively) are very similar, and are of the same order of magnitude as that of the affinity of LOS for the upstream transporter, MsbA. Interestingly, both methods showed that fLOS binding to LptC is mostly irreversible, thus reflecting the fact that LPS can be released from LptC only when energy is supplied by ATP or in the presence of a higher-affinity LptA protein. A fluorescent glycolipid was synthesized: this also interacted irreversibly with LptC, but with lower affinity (apparent Kd=221 µM). This compound binds LptC at the LPS binding site and is a prototype for the development of new antibiotics targeting LPS transport in Gram-negative bacteria.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/metabolismo , Oligosacáridos/metabolismo , Transporte Biológico , Escherichia coli/química , Proteínas de Escherichia coli/química , Fluorescencia , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/metabolismo , Lipopolisacáridos/química , Proteínas de la Membrana/química , Modelos Moleculares , Oligosacáridos/química
15.
Bioorg Med Chem ; 22(8): 2576-83, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24680056

RESUMEN

Structural requirements of D-arabinose 5-phosphate isomerase (KdsD, E.C. 5.3.1.13) from Pseudomonas aeruginosa were analysed in detail using advanced NMR techniques. We performed epitope mapping studies of the binding between the enzyme and the most potent KdsD inhibitors found to date, together with studies of a set of newly synthesised arabinose 5-phosphate (A5P) mimetics. We report here the first experimental evidence that KdsD may bind the furanose form of A5P, suggesting that catalysis of ring opening may be an important part of KdsD catalysis.


Asunto(s)
Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Isomerismo , Pruebas de Sensibilidad Microbiana , Unión Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato
16.
Mar Drugs ; 12(2): 1023-42, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24549203

RESUMEN

The bacterial outer membrane (OM) is a peculiar biological structure with a unique composition that contributes significantly to the fitness of Gram-negative bacteria in hostile environments. OM components are all synthesized in the cytosol and must, then, be transported efficiently across three compartments to the cell surface. Lipopolysaccharide (LPS) is a unique glycolipid that paves the outer leaflet of the OM. Transport of this complex molecule poses several problems to the cells due to its amphipatic nature. In this review, the multiprotein machinery devoted to LPS transport to the OM is discussed together with the challenges associated with this process and the solutions that cells have evolved to address the problem of LPS biogenesis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Transporte Biológico/fisiología , Citosol/metabolismo , Proteínas de Escherichia coli/metabolismo
17.
J Bacteriol ; 195(5): 1100-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23292770

RESUMEN

Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components.


Asunto(s)
Escherichia coli/citología , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Estructura Terciaria de Proteína
18.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119406, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36473551

RESUMEN

The rapid rise of multi-resistant bacteria is a global health threat. This is especially serious for Gram-negative bacteria in which the impermeable outer membrane (OM) acts as a shield against antibiotics. The development of new drugs with novel modes of actions to combat multi-drug resistant pathogens requires the selection of suitable processes to be targeted. The LPS export pathway is an excellent under exploited target for drug development. Indeed, LPS is the major determinant of the OM permeability barrier, and its biogenetic pathway is conserved in most Gram-negatives. Here we describe efforts to identify inhibitors of the multiprotein Lpt system that transports LPS to the cell surface. Despite none of these molecules has been approved for clinical use, they may represent valuable compounds for optimization. Finally, the recent discovery of a link between inhibition of LPS biogenesis and changes in peptidoglycan structure uncovers additional targets to develop novel therapeutic strategies.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Lipopolisacáridos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular
19.
mBio ; 14(1): e0220222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36541759

RESUMEN

Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) of many Gram-negative bacteria, providing a barrier against the entry of toxic molecules. In Escherichia coli, LPS is exported to the cell surface by seven essential proteins (LptA-G) that form a transenvelope complex. At the inner membrane, the ATP-binding cassette (ABC) transporter LptB2FG associates with LptC to power LPS extraction from the membrane and transfer to the periplasmic LptA protein, which is in complex with the OM translocon LptDE. LptC interacts both with LptB2FG and LptADE to mediate the formation of the transenvelope bridge and regulates the ATPase activity of LptB2FG. A genetic screen has previously identified suppressor mutants at a residue (R212) of LptF that are viable in the absence of LptC. Here, we present in vivo evidence that the LptF R212G mutant assembles a six-protein transenvelope complex in which LptA mediates interactions with LptF and LptD in the absence of LptC. Furthermore, we present in vitro evidence that the mutant LptB2FG complexes restore the regulation of ATP hydrolysis as it occurs in the LptB2FGC complex to achieve wild-type efficient coupling of ATP hydrolysis and LPS movement. We also show the suppressor mutations restore the wild-type levels of LPS transport both in vivo and in vitro, but remarkably, without restoring the affinity of the inner membrane complex for LptA. Based on the sensitivity of lptF suppressor mutants to selected stress conditions relative to wild-type cells, we show that there are additional regulatory functions of LptF and LptC that had not been identified. IMPORTANCE The presence of an external LPS layer in the outer membrane makes Gram-negative bacteria intrinsically resistant to many antibiotics. Millions of LPS molecules are transported to the cell surface per generation by the Lpt molecular machine made, in E. coli, by seven essential proteins. LptC is the unconventional regulatory subunit of the LptB2FGC ABC transporter, involved in coordinating energy production and LPS transport. Surprisingly, despite being essential for bacterial growth, LptC can be deleted, provided that a specific residue in the periplasmic domain of LptF is mutated and LptA is overexpressed. Here, we apply biochemical techniques to investigate the suppression mechanism. The data produced in this work disclose an unknown regulatory function of LptF in the transporter that not only expands the knowledge about the Lpt complex but can also be targeted by novel LPS biogenesis inhibitors.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Supresión Genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Transporte Biológico/fisiología , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Portadoras/metabolismo
20.
Methods Mol Biol ; 2548: 53-69, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36151491

RESUMEN

Gram-negative diderm bacteria are characterized by a tripartite cell envelope, composed of an inner membrane (IM) and a lipopolysaccharide (LPS)-containing outer membrane (OM), separated by an aqueous space where the peptidoglycan is embedded. LPS is a peculiar glycolipid endowed with several biological activities. The biosynthesis and transport of LPS to its final location take place in every compartment of the cell envelope. Proteins and protein machineries with different subcellular localization are involved in this process to facilitate the trafficking of LPS across subcellular compartments that differ in their physicochemical proprieties. The fractionation of bacterial cell envelopes can give information on the status of the LPS biogenesis by allowing the analysis of LPS profiles and of the localization of proteins involved in the transport. Here, we describe a standardized protocol for membrane fractionation in Escherichia coli using sucrose density gradient centrifugation that separates the IM from the OM cellular fractions. Bacterial cells are first converted into spheroplasts and lysed; then the membrane fractions are collected by ultracentrifugation and separated at high speed by exploiting the differences in membrane density. The fractions obtained are analyzed for LPS total amount and electrophoretic profile.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Centrifugación por Gradiente de Densidad , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucolípidos/metabolismo , Lipopolisacáridos/química , Peptidoglicano/metabolismo , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA