Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ultrason Sonochem ; 73: 105482, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33588208

RESUMEN

Liquid perfluorocarbon nanodroplets (NDs) are an attractive alternative to microbubbles (MBs) for ultrasound-mediated therapeutic and diagnostic applications. ND size and size distribution have a strong influence on their behaviour in vivo, including extravasation efficiency, circulation time, and response to ultrasound stimulation. Thus, it is desirable to identify ways to tailor the ND size and size distribution during manufacturing. In this study phospholipid-coated NDs, comprising a perfluoro-n-pentane (PFP) core stabilised by a DSPC/PEG40s (1,2-distearoyl-sn-glycero-3-phosphocholine and polyoxyethylene(40)stearate, 9:1 molar ratio) shell, were produced in phosphate-buffered saline (PBS) by sonication. The effect of the following production-related parameters on ND size was investigated: PFP concentration, power and duration of sonication, and incorporation of a lipophilic fluorescent dye. ND stability was also assessed at both 4 °C and 37 °C. When a sonication pulse of 6 s and 15% duty cycle was employed, increasing the volumetric concentration of PFP from 5% to 15% v/v in PBS resulted in an increase in ND diameter from 215.8 ± 16.8 nm to 408.9 ± 171.2 nm. An increase in the intensity of sonication from 48 to 72 W (with 10% PFP v/v in PBS) led to a decrease in ND size from 354.6 ± 127.2 nm to 315.0 ± 100.5 nm. Increasing the sonication time from 20 s to 40 s (using a pulsed sonication with 30% duty cycle) did not result in a significant change in ND size (in the range 278-314 nm); however, when it was increased to 60 s, the average ND diameter reduced to 249.7 ± 9.7 nm, which also presented a significantly lower standard deviation compared to the other experimental conditions investigated (i.e., 9.7 nm vs. > 49.4 nm). The addition of the fluorescent dye DiI at different molar ratios did not affect the ND size distribution. NDs were stable at 4 °C for up to 6 days and at 37 °C for up to 110 min; however, some evidence of ND-to-MB phase transition was observed after 40 min at 37 °C. Finally, phase transition of NDs into MBs was demonstrated using a tissue-mimicking flow phantom under therapeutic ultrasound exposure conditions (ultrasound frequency: 0.5 MHz, acoustic pressure: 2-4 MPa, and pulse repetition frequency: 100 Hz).


Asunto(s)
Lípidos/química , Nanopartículas/química , Sonicación/métodos , Colorantes Fluorescentes/química , Tamaño de la Partícula , Tensoactivos/química
2.
Ultrasound Med Biol ; 47(7): 1826-1843, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33820668

RESUMEN

A combination of ultrahigh-speed optical imaging (5 × 106 frames/s), B-mode ultrasound and passive cavitation detection was used to study the vaporization process and determine both the acoustic droplet vaporization (ADV) and inertial cavitation (IC) thresholds of phospholipid-coated perfluorobutane nanodroplets (PFB NDs, diameter = 237 ± 16 nm). PFB NDs have not previously been studied with ultrahigh-speed imaging and were observed to form individual microbubbles (1-10 µm) within two to three cycles and subsequently larger bubble clusters (10-50 µm). The ADV and IC thresholds did not statistically significantly differ and decreased with increasing pulse length (20-20,000 cycles), pulse repetition frequency (1-100 Hz), concentration (108-1010 NDs/mL), temperature (20°C-45°C) and decreasing frequency (1.5-0.5 MHz). Overall, the results indicate that at frequencies of 0.5, 1.0 and 1.5 MHz, PFB NDs can be vaporized at moderate peak negative pressures (<2.0 MPa), pulse lengths and pulse repetition frequencies. This finding is encouraging for the use of PFB NDs as cavitation agents, as these conditions are comparable to those required to achieve therapeutic effects with microbubbles, unlike those reported for higher-boiling-point NDs. The differences between the optically and acoustically determined ADV thresholds, however, suggest that application-specific thresholds should be defined according to the biological/therapeutic effect of interest.


Asunto(s)
Acústica , Fluorocarburos , Nanopartículas , Imagen Óptica , Fosfolípidos , Volatilización , Imagen Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA