Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 25(2): 1330-1339, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38254252

RESUMEN

The design of imaging agents with a high fluorine content is necessary for overcoming the challenges of low sensitivity in 19F magnetic resonance imaging (MRI)-based molecular imaging. Chemically self-assembled nanorings (CSANs) provide a strategy to increase the fluorine content through multivalent display. We previously reported an 19F NMR-based imaging tracer, in which case a CSAN-compatible epidermal growth factor receptor (EGFR)-targeting protein E1-dimeric dihydrofolate (E1-DD) was bioconjugated to a highly fluorinated peptide. Despite good 19F NMR performance in aqueous solutions, a limited signal was observed in cell-based 19F NMR using this monomeric construct, motivating further design. Here, we design several new E1-DD proteins bioconjugated to peptides of different fluorine contents. Flow cytometry analysis was used to assess the effect of variable fluorinated peptide sequences on the cellular binding characteristics. Structure-optimized protein, RTC-3, displayed an optimal spectral performance with high affinity and specificity for EGFR-overexpressing cells. To further improve the fluorine content, we next engineered monomeric RTC-3 into CSAN, η-RTC-3. With an approximate eightfold increase in the fluorine content, multivalent η-RTC-3 maintained high cellular specificity and optimal 19F NMR spectral behavior. Importantly, the first cell-based 19F NMR spectra of η-RTC-3 were obtained bound to EGFR-expressing A431 cells, showing a significant amplification in the signal. This new design illustrated the potential of multivalent fluorinated CSANs for future 19F MRI molecular imaging applications.


Asunto(s)
Flúor , Imagen por Resonancia Magnética , Flúor/química , Espectroscopía de Resonancia Magnética , Proteínas , Péptidos , Receptores ErbB/metabolismo
2.
Environ Sci Technol ; 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340057

RESUMEN

Fluorinated breakdown products from photolysis of pharmaceuticals and pesticides are of environmental concern due to their potential persistence and toxicity. While mass spectrometry workflows have been shown to be useful in identifying products, they fall short for fluorinated products and may miss up to 90% of products. Studies have shown that 19F NMR measurements assist in identifying and quantifying reaction products, but this protocol can be further developed by incorporating computations. Density functional theory was used to compute 19F NMR shifts for parent and product structures in photolysis reactions. Computations predicted NMR spectra of compounds with an R2 of 0.98. Computed shifts for several isolated product structures from LC-HRMS matched the experimental shifts with <0.7 ppm error. Multiple products including products that share the same shift that were not previously reported were identified and quantified using computational shifts, including aliphatic products in the range of -80 to -88 ppm. Thus, photolysis of fluorinated pharmaceuticals and pesticides can result in compounds that are polyfluorinated alkyl substances (PFAS), including aliphatic-CF3 or vinyl-CF2 products derived from heteroaromatic-CF3 groups. C-F bond-breaking enthalpies and electron densities around the fluorine motifs agreed well with the experimentally observed defluorination of CF3 groups. Combining experimental-computational 19F NMR allows quantification of products identified via LC-HRMS without the need for authentic standards. These results have applications for studies of environmental fate and analysis of fluorinated pharmaceuticals and pesticides in development.

3.
Elife ; 132024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742856

RESUMEN

The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.


Asunto(s)
Inhibidores de Proteínas Quinasas , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/química , Regulación Alostérica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/metabolismo , Multimerización de Proteína/efectos de los fármacos , Humanos , Conformación Proteica , Unión Proteica , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA