Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ISPRS J Photogramm Remote Sens ; 187: 362-377, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36093126

RESUMEN

The recently launched and upcoming hyperspectral satellite missions, featuring contiguous visible-to-shortwave infrared spectral information, are opening unprecedented opportunities for the retrieval of a broad set of vegetation traits with enhanced accuracy through novel retrieval schemes. In this framework, we exploited hyperspectral data cubes collected by the new-generation PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite of the Italian Space Agency to develop and test a hybrid retrieval workflow for crop trait mapping. Crop traits were mapped over an agricultural area in north-east Italy (Jolanda di Savoia, FE) using PRISMA images collected during the 2020 and 2021 vegetative seasons. Leaf chlorophyll content, leaf nitrogen content, leaf water content and the corresponding canopy level traits scaled through leaf area index were estimated using a hybrid retrieval scheme based on PROSAIL-PRO radiative transfer simulations coupled with a Gaussian processes regression algorithm. Active learning algorithms were used to optimise the initial set of simulated data by extracting only the most informative samples. The accuracy of the proposed retrieval scheme was evaluated against a broad ground dataset collected in 2020 in correspondence of three PRISMA overpasses. The results obtained were positive for all the investigated variables. At the leaf level, the highest accuracy was obtained for leaf nitrogen content (LNC: r2=0.87, nRMSE=7.5%), while slightly worse results were achieved for leaf chlorophyll content (LCC: r2=0.67, nRMSE=11.7%) and leaf water content (LWC: r2=0.63, nRMSE=17.1%). At the canopy level, a significantly higher accuracy was observed for nitrogen content (CNC: r2=0.92, nRMSE=5.5%) and chlorophyll content (CCC: r2=0.82, nRMSE=10.2%), whereas comparable results were obtained for water content (CWC: r2=0.61, nRMSE=16%). The developed models were additionally tested against an independent dataset collected in 2021 to evaluate their robustness and exportability. The results obtained (i. e., LCC: r2=0.62, nRMSE=27.9%; LNC: r2=0.35, nRMSE=28.4%; LWC: r2=0.74, nRMSE=20.4%; LAI: r2=0.84, nRMSE=14.5%; CCC: r2=0.79, nRMSE=18.5%; CNC: r2=0.62, nRMSE=23.7%; CWC: r2=0.92, nRMSE=16.6%) evidence the transferability of the hybrid approach optimised through active learning for most of the investigated traits. The developed models were then used to map the spatial and temporal variability of the crop traits from the PRISMA images. The high accuracy and consistency of the results demonstrates the potential of spaceborne imaging spectroscopy for crop monitoring, paving the path towards routine retrievals of multiple crop traits over large areas that could drive more effective and sustainable agricultural practices worldwide.

2.
Sensors (Basel) ; 17(5)2017 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-28505070

RESUMEN

Waste of electric and electronic equipment (WEEE) is the fastest-growing waste stream in Europe. The large amount of electric and electronic products introduced every year in the market makes WEEE disposal a relevant problem. On the other hand, the high abundance of key metals included in WEEE has increased the industrial interest in WEEE recycling. However, the high variability of materials used to produce electric and electronic equipment makes key metals' recovery a complex task: the separation process requires flexible systems, which are not currently implemented in recycling plants. In this context, hyperspectral sensors and imaging systems represent a suitable technology to improve WEEE recycling rates and the quality of the output products. This work introduces the preliminary tests using a hyperspectral system, integrated in an automatic WEEE recycling pilot plant, for the characterization of mixtures of fine particles derived from WEEE shredding. Several combinations of classification algorithms and techniques for signal enhancement of reflectance spectra were implemented and compared. The methodology introduced in this study has shown characterization accuracies greater than 95%.

3.
Sci Total Environ ; 684: 445-457, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31154217

RESUMEN

This work focuses on the characterization of background levels of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in seabed marine sediments of the central Adriatic Sea, collected up to 10 km far from the Abruzzo region coastline (Italy). The used approach follows the guidelines established by the Decree of the Italian Ministry of Environment, n. 173/2016, concerning the determination of threshold values of metal concentration, and including only samples with low or absent toxicological content. A statistical analysis, using the adjusted Tuckey's boxplot to identify the percentiles and potential outliers, was performed. The background concentrations were calculated as the values of the 90th percentile of distribution, according to the national regulation. This study represents the first attempt to calculate the background levels of marine sediments done at regional level in Abruzzo. A few outliers have been found, and interpreted as potential anthropic contamination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA