Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell ; 137(3): 498-508, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19410546

RESUMEN

DNA methylation is a conserved epigenetic mark in plants and mammals. In Arabidopsis, DNA methylation can be triggered by small interfering RNAs (siRNAs) through an RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification of an RdDM effector, KTF1. Loss-of-function mutations in KTF1 reduce DNA methylation and release the silencing of RdDM target loci without abolishing the siRNA triggers. KTF1 has similarity to the transcription elongation factor SPT5 and contains a C-terminal extension rich in GW/WG repeats. KTF1 colocalizes with ARGONAUTE 4 (AGO4) in punctate nuclear foci and binds AGO4 and RNA transcripts. Our results suggest KTF1 as an adaptor protein that binds scaffold transcripts generated by Pol V and recruits AGO4 and AGO4-bound siRNAs to form an RdDM effector complex. The dual interaction of an effector protein with AGO and small RNA target transcripts may be a general feature of RNA-silencing effector complexes.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Argonautas , Sitios de Unión , ADN de Plantas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Nucleic Acids Res ; 47(17): 9024-9036, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31329950

RESUMEN

In plants, nuclear multisubunit RNA polymerases IV and V are RNA Polymerase II-related enzymes that synthesize non-coding RNAs for RNA-directed DNA methylation (RdDM) and transcriptional gene silencing. Here, we tested the importance of the C-terminal domain (CTD) of Pol IV's largest subunit given that the Pol II CTD mediates multiple aspects of Pol II transcription. We show that the CTD is dispensable for Pol IV catalytic activity and Pol IV termination-dependent activation of RNA-DEPENDENT RNA POLYMERASE 2, which partners with Pol IV to generate dsRNA precursors of the 24 nt siRNAs that guide RdDM. However, 24 nt siRNA levels decrease ∼80% when the CTD is deleted. RNA-dependent cytosine methylation is also reduced, but only ∼20%, suggesting that siRNA levels typically exceed the levels needed for methylation of most loci. Pol IV-dependent loci affected by loss of the CTD are primarily located in chromosome arms, similar to loci dependent CLSY1/2 or SHH1, which are proteins implicated in Pol IV recruitment. However, deletion of the CTD does not phenocopy clsy or shh1 mutants, consistent with the CTD affecting post-recruitment aspects of Pol IV activity at target loci.


Asunto(s)
Proteínas de Arabidopsis/genética , Metilación de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , ARN Interferente Pequeño/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosina/química , Citosina/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Silenciador del Gen , Sitios Genéticos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metiltransferasas/metabolismo , Plantas Modificadas Genéticamente , Dominios Proteicos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Secuenciación Completa del Genoma
3.
Genes Dev ; 27(14): 1545-50, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23873938

RESUMEN

Eukaryotes can have thousands of 45S ribosomal RNA (rRNA) genes, many of which are silenced during development. Using fluorescence-activated sorting techniques, we show that active rRNA genes in Arabidopsis thaliana are present within sorted nucleoli, whereas silenced rRNA genes are excluded. DNA methyltransferase (met1), histone deacetylase (hda6), or chromatin assembly (caf1) mutants that disrupt silencing abrogate this nucleoplasmic-nucleolar partitioning. Bisulfite sequencing data indicate that active nucleolar rRNA genes are nearly completely demethylated at promoter CGs, whereas silenced genes are nearly fully methylated. Collectively, the data reveal that rRNA genes occupy distinct but changeable nuclear territories according to their epigenetic state.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Epigénesis Genética , ARN Ribosómico/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Modelos Genéticos , Mutación
4.
Plant Cell ; 29(3): 589-599, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28223440

RESUMEN

Repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. We previously showed that DSB-induced small RNAs (diRNAs) facilitate homologous recombination-mediated DSB repair in Arabidopsis thaliana Here, we show that INVOLVED IN DE NOVO2 (IDN2), a double-stranded RNA binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA binding ARGONAUTE2 leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from single-stranded DNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína de Replicación A/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Reparación del ADN/fisiología , Recombinación Homóloga/genética , Recombinación Homóloga/fisiología , Unión Proteica/genética , Unión Proteica/fisiología , Proteínas de Unión al ARN/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína de Replicación A/genética
5.
Mol Cell ; 45(3): 357-70, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22325353

RESUMEN

DNA methylation is an important epigenetic mark established by the combined actions of methylation and demethylation reactions. Plants use a base excision repair pathway for active DNA demethylation. After 5-methylcytosine removal, the Arabidopsis DNA glycosylase/lyase ROS1 incises the DNA backbone and part of the product has a single-nucleotide gap flanked by 3'- and 5'-phosphate termini. Here we show that the DNA phosphatase ZDP removes the blocking 3' phosphate, allowing subsequent DNA polymerization and ligation steps needed to complete the repair reactions. ZDP and ROS1 interact in vitro and colocalize in vivo in nucleoplasmic foci. Extracts from zdp mutant plants are unable to complete DNA demethylation in vitro, and the mutations cause DNA hypermethylation and transcriptional silencing of a reporter gene. Genome-wide methylation analysis in zdp mutant plants identified hundreds of hypermethylated endogenous loci. Our results show that ZDP functions downstream of ROS1 in one branch of the active DNA demethylation pathway.


Asunto(s)
Arabidopsis/enzimología , Metilación de ADN , Nucleotidasas/química , 5-Metilcitosina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Núcleo Celular/metabolismo , División del ADN , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes Reporteros , Sitios Genéticos , Genoma de Planta , Cinética , Luciferasas/biosíntesis , Luciferasas/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleotidasas/genética , Nucleotidasas/metabolismo , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
6.
Genes Dev ; 24(10): 986-91, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20478993

RESUMEN

JMJ14 is a histone H3 Lys4 (H3K4) trimethyl demethylase that affects mobile RNA silencing in an Arabidopsis transgene system. It also influences CHH DNA methylation, abundance of endogenous transposon transcripts, and flowering time. JMJ14 acts at a point in RNA silencing pathways that is downstream from RNA-dependent RNA polymerase 2 (RDR2) and Argonaute 4 (AGO4). Our results illustrate a link between RNA silencing and demethylation of histone H3 trimethylysine. We propose that JMJ14 acts downstream from the Argonaute effector complex to demethylate histone H3K4 at the target of RNA silencing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Interferencia de ARN/fisiología , Transducción de Señal/fisiología , Proteínas de Arabidopsis/genética , Cromatina/genética , Metilación de ADN/genética , Flores/genética , Prueba de Complementación Genética , Histona Demetilasas con Dominio de Jumonji/genética , Mutación/genética , Fotoperiodo
7.
Genes Dev ; 24(11): 1119-32, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20516197

RESUMEN

The Arabidopsis histone deacetylase HDA6 is required to silence transgenes, transposons, and ribosomal RNA (rRNA) genes subjected to nucleolar dominance in genetic hybrids. In nonhybrid Arabidopsis thaliana, we show that a class of 45S rRNA gene variants that is normally inactivated during development fails to be silenced in hda6 mutants. In these mutants, symmetric cytosine methylation at CG and CHG motifs is reduced, and spurious RNA polymerase II (Pol II) transcription occurs throughout the intergenic spacers. The resulting sense and antisense spacer transcripts facilitate a massive overproduction of siRNAs that, in turn, direct de novo cytosine methylation of corresponding gene sequences. However, the resulting de novo DNA methylation fails to suppress Pol I or Pol II transcription in the absence of HDA6 activity; instead, euchromatic histone modifications typical of active genes accumulate. Collectively, the data reveal a futile cycle of unregulated transcription, siRNA production, and siRNA-directed DNA methylation in the absence of HDA6-mediated histone deacetylation. We propose that spurious Pol II transcription throughout the intergenic spacers in hda6 mutants, combined with losses of histone deacetylase activity and/or maintenance DNA methylation, eliminates repressive chromatin modifications needed for developmental rRNA gene dosage control.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Citosina/metabolismo , ADN Polimerasa II/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de ARNr/genética , Histona Desacetilasas/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Arabidopsis/genética , ADN Intergénico/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Histona Desacetilasas/genética , Histonas/metabolismo , Metilación , Mutación
8.
PLoS Genet ; 10(7): e1004446, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24992598

RESUMEN

RNA-directed DNA methylation (RdDM) and histone H3 lysine 9 dimethylation (H3K9me2) are related transcriptional silencing mechanisms that target transposable elements (TEs) and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1α (TOP1α) was able to de-repress LUCL by reducing its DNA methylation and H3K9me2 levels. Further studies with Arabidopsis top1α mutants showed that TOP1α silences endogenous RdDM loci by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at TEs and repeats. This study assigned a new role in epigenetic silencing to an enzyme that affects DNA topology.


Asunto(s)
Metilación de ADN/genética , ADN-Topoisomerasas de Tipo I/genética , Elementos Transponibles de ADN/genética , Epigénesis Genética , Transcripción Genética , Arabidopsis/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Silenciador del Gen , Histonas/genética , Lisina/genética , Mutación , ARN/genética , ARN Largo no Codificante/genética
9.
Genes Dev ; 23(3): 318-30, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19204117

RESUMEN

RNA-directed DNA methylation (RdDM) is an RNAi-based mechanism for establishing transcriptional gene silencing in plants. The plant-specific RNA polymerases IV and V are required for the generation of 24-nucleotide (nt) siRNAs and for guiding sequence-specific DNA methylation by the siRNAs, respectively. However, unlike the extensively studied multisubunit Pol II, our current knowledge about Pol IV and Pol V is restricted to only the two largest subunits NRPD1a/NRPD1 and NRPD1b/NRPE1 and the one second-largest subunit NRPD2a. It is unclear whether other subunits may be required for the functioning of Pol IV and Pol V in RdDM. From a genetic screen for second-site suppressors of the DNA demethylase mutant ros1, we identified a new component (referred to as RDM2) as well as seven known components (NRPD1, NRPE1, NRPD2a, AGO4, HEN1, DRD1, and HDA6) of the RdDM pathway. The differential effects of the mutations on two mechanistically distinct transcriptional silencing reporters suggest that RDM2, NRPD1, NRPE1, NRPD2a, HEN1, and DRD1 function only in the siRNA-dependent pathway of transcriptional silencing, whereas HDA6 and AGO4 have roles in both siRNA-dependent and -independent pathways of transcriptional silencing. In the rdm2 mutants, DNA methylation and siRNA accumulation were reduced substantially at loci previously identified as endogenous targets of Pol IV and Pol V, including 5S rDNA, MEA-ISR, AtSN1, AtGP1, and AtMU1. The amino acid sequence of RDM2 is similar to that of RPB4 subunit of Pol II, but we show evidence that RDM2 has diverged significantly from RPB4 and cannot function in Pol II. An association of RDM2 with both NRPD1 and NRPE1 was observed by coimmunoprecipitation and coimmunolocalization assays. Our results show that RDM2/NRPD4/NRPE4 is a new component of the RdDM pathway in Arabidopsis and that it functions as part of Pol IV and Pol V.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN/fisiología , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasa II/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Metilación de ADN/genética , ADN de Plantas/genética , ADN de Plantas/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Genes de Plantas , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Subunidades de Proteína , Interferencia de ARN , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Homología de Secuencia de Aminoácido
10.
Genes Dev ; 23(23): 2717-22, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19903758

RESUMEN

RNA-directed DNA methylation (RdDM) is a conserved mechanism for epigenetic silencing of transposons and other repetitive elements. We report that the rdm4 (RNA-directed DNA Methylation4) mutation not only impairs RdDM, but also causes pleiotropic developmental defects in Arabidopsis. Both RNA polymerase II (Pol II)- and Pol V-dependent transcripts are affected in the rdm4 mutant. RDM4 encodes a novel protein that is conserved from yeast to humans and interacts with Pol II and Pol V in plants. Our results suggest that RDM4 functions in epigenetic regulation and plant development by serving as a transcriptional regulator for RNA Pol V and Pol II, respectively.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Metilación de ADN , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , ARN de Planta/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Secuencia Conservada , ARN Polimerasas Dirigidas por ADN/metabolismo , Silenciador del Gen/fisiología , Humanos , Mutación , Fenotipo
11.
Nature ; 465(7294): 106-9, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20410883

RESUMEN

DNA methylation is an important epigenetic mark in many eukaryotes. In plants, 24-nucleotide small interfering RNAs (siRNAs) bound to the effector protein, Argonaute 4 (AGO4), can direct de novo DNA methylation by the methyltransferase DRM2 (refs 2, 4-6). Here we report a new regulator of RNA-directed DNA methylation (RdDM) in Arabidopsis: RDM1. Loss-of-function mutations in the RDM1 gene impair the accumulation of 24-nucleotide siRNAs, reduce DNA methylation, and release transcriptional gene silencing at RdDM target loci. RDM1 encodes a small protein that seems to bind single-stranded methyl DNA, and associates and co-localizes with RNA polymerase II (Pol II, also known as NRPB), AGO4 and DRM2 in the nucleus. Our results indicate that RDM1 is a component of the RdDM effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. Our results also indicate that, although RDM1 and Pol V (also known as NRPE) may function together at some RdDM target sites in the peri-nucleolar siRNA processing centre, Pol II rather than Pol V is associated with the RdDM effector complex at target sites in the nucleoplasm.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , ARN Polimerasa II/metabolismo , ARN de Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen/fisiología , Metiltransferasas/metabolismo , Mutación
12.
Mol Cell ; 32(5): 673-84, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-19061642

RESUMEN

In genetic hybrids, the silencing of nucleolar rRNA genes inherited from one progenitor is the epigenetic phenomenon known as nucleolar dominance. An RNAi knockdown screen identified the Arabidopsis de novo cytosine methyltransferase, DRM2, and the methylcytosine binding domain proteins, MBD6 and MBD10, as activities required for nucleolar dominance. MBD10 localizes throughout the nucleus, but MBD6 preferentially associates with silenced rRNA genes and does so in a DRM2-dependent manner. DRM2 methylation is thought to be guided by siRNAs whose biogenesis requires RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). Consistent with this hypothesis, knockdown of DCL3 or RDR2 disrupts nucleolar dominance. Collectively, these results indicate that in addition to directing the silencing of retrotransposons and noncoding repeats, siRNAs specify de novo cytosine methylation patterns that are recognized by MBD6 and MBD10 in the large-scale silencing of rRNA gene loci.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Nucléolo Celular/genética , Citosina/metabolismo , Metilación de ADN , Silenciador del Gen , ARN Interferente Pequeño/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Emparejamiento Base/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Intergénico , Heterocromatina/metabolismo , Modelos Biológicos , Región Organizadora del Nucléolo/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Interferencia de ARN , ARN de Planta/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
13.
Chromosome Res ; 22(2): 225-40, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24846724

RESUMEN

Noncoding RNAs are the rising stars of genome regulation and are crucial to an organism's metabolism, development, and defense. One of their most notable functions is its ability to direct epigenetic modifications through small RNA molecules to specific genomic regions, ensuring transcriptional regulation, proper genome organization, and maintenance of genome integrity. Here, we review the current knowledge of the spatial organization of the Arabidopsis thaliana RNA-directed DNA methylation pathway within the cell nucleus, which, while known to be essential for the proper establishment of epigenetic modifications, remains poorly understood. We will also discuss possible future cytological approaches that have the potential of unveiling functional insights into how small RNA-directed epigenetics is regulated through the spatiotemporal regulation of its major components within the cell.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN de Plantas/genética , Epigénesis Genética , Interferencia de ARN , ARN no Traducido/genética , ARN no Traducido/aislamiento & purificación , Análisis de Secuencia de ADN
14.
BMC Plant Biol ; 14: 353, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25511710

RESUMEN

BACKGROUND: The RAD21 cohesin plays, besides its well-recognised role in chromatid cohesion, a role in DNA double strand break (dsb) repair. In Arabidopsis there are three RAD21 paralog genes (AtRAD21.1, AtRAD21.2 and AtRAD21.3), yet only AtRAD21.1 has been shown to be required for DNA dsb damage repair. Further investigation of the role of cohesins in DNA dsb repair was carried out and is here reported. RESULTS: We show for the first time that not only AtRAD21.1 but also AtRAD21.3 play a role in somatic DNA dsb repair. Comet data shows that the lack of either cohesins induces a similar high basal level of DNA dsb in the nuclei and a slower DNA dsb repair kinetics in both cohesin mutants. The observed AtRAD21.3 transcriptional response to DNA dsb induction reinforces further the role of this cohesin in DNA dsb repair. The importance of AtRAD21.3 in DNA dsb damage repair, after exposure to DNA dsb damage inducing agents, is notorious and recognisably evident at the phenotypical level, particularly when the AtRAD21.1 gene is also disrupted. CONCLUSIONS: Our data demonstrates that both Arabidopsis cohesin (AtRAD21.1 and AtRAD21.3) play a role in somatic DNA dsb repair. Furthermore, the phenotypical data from the atrad21.1 atrad21.3 double mutant indicates that these two cohesins function synergistically in DNA dsb repair. The implications of this data are discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , ADN de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Nature ; 455(7217): 1259-62, 2008 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-18815596

RESUMEN

DNA methylation is an important epigenetic mark for transcriptional gene silencing (TGS) in diverse organisms. Recent studies suggest that the methylation status of a number of genes is dynamically regulated by methylation and demethylation. In Arabidopsis, active DNA demethylation is mediated by the ROS1 (repressor of silencing 1) subfamily of 5-methylcytosine DNA glycosylases through a base excision repair pathway. These demethylases have critical roles in erasing DNA methylation and preventing TGS of target genes. However, it is not known how the demethylases are targeted to specific sequences. Here we report the identification of ROS3, an essential regulator of DNA demethylation that contains an RNA recognition motif. Analysis of ros3 mutants and ros1 ros3 double mutants suggests that ROS3 acts in the same genetic pathway as ROS1 to prevent DNA hypermethylation and TGS. Gel mobility shift assays and analysis of ROS3 immunoprecipitate from plant extracts shows that ROS3 binds to small RNAs in vitro and in vivo. Immunostaining shows that ROS3 and ROS1 proteins co-localize in discrete foci dispersed throughout the nucleus. These results demonstrate a critical role for ROS3 in preventing DNA hypermethylation and suggest that DNA demethylation by ROS1 may be guided by RNAs bound to ROS3.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Proteínas de Unión al ARN/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Silenciador del Gen , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Unión al ARN/genética , Transcripción Genética
16.
Nucleic Acids Res ; 40(10): 4422-31, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22302148

RESUMEN

Plant specific SGS3-like proteins are composed of various combinations of an RNA-binding XS domain, a zinc-finger zf-XS domain, a coil-coil domain and a domain of unknown function called XH. In addition to being involved in de novo 2 (IDN2) and SGS3, the Arabidopsis genome encodes 12 uncharacterized SGS3-like proteins. Here, we show that a group of SGS3-like proteins act redundantly in RNA-directed DNA methylation (RdDM) pathway in Arabidopsis. Transcriptome co-expression analyses reveal significantly correlated expression of two SGS3-like proteins, factor of DNA methylation 1 (FDM1) and FDM2 with known genes required for RdDM. The fdm1 and fdm2 double mutations but not the fdm1 or fdm2 single mutations significantly impair DNA methylation at RdDM loci, release transcriptional gene silencing and dramatically reduce the abundance of siRNAs originated from high copy number repeats or transposons. Like IDN2 and SGS3, FDM1 binds dsRNAs with 5' overhangs. Double mutant analyses also reveal that IDN2 and three uncharacterized SGS3-like proteins FDM3, FDM4 and FDM5 have overlapping function with FDM1 in RdDM. Five FDM proteins and IDN2 define a group of SGS3-like proteins that possess all four-signature motifs in Arabidopsis. Thus, our results demonstrate that this group of SGS3-like proteins is an important component of RdDM. This study further enhances our understanding of the SGS3 gene family and the RdDM pathway.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Metilación de ADN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Mutación , ARN Polimerasa II/metabolismo , ARN Bicatenario/metabolismo , ARN no Traducido/biosíntesis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
17.
Proc Natl Acad Sci U S A ; 108(1): 409-14, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173264

RESUMEN

In plants, small interfering RNAs (siRNAs) with sequence homology to transcribed regions of genes can guide the sequence-specific degradation of corresponding mRNAs, leading to posttranscriptional gene silencing (PTGS). The current consensus is that siRNA-mediated PTGS occurs primarily in the cytoplasm where target mRNAs are localized and translated into proteins. However, expression of an inverted-repeat double-stranded RNA corresponding to the soybean FAD2-1A desaturase intron is sufficient to silence FAD2-1, implicating nuclear precursor mRNA (pre-mRNA) rather than cytosolic mRNA as the target of PTGS. Silencing FAD2-1 using intronic or 3'-UTR sequences does not affect transcription rates of the target genes but results in the strong reduction of target transcript levels in the nucleus. Moreover, siRNAs corresponding to pre-mRNA-specific sequences accumulate in the nucleus. In Arabidopsis, we find that two enzymes involved in PTGS, Dicer-like 4 and RNA-dependent RNA polymerase 6, are localized in the nucleus. Collectively, these results demonstrate that siRNA-directed RNA degradation can take place in the nucleus, suggesting the need for a more complex view of the subcellular compartmentation of PTGS in plants.


Asunto(s)
Núcleo Celular/metabolismo , Ácido Graso Desaturasas/metabolismo , Interferencia de ARN/fisiología , Precursores del ARN/metabolismo , ARN Interferente Pequeño/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Ácido Graso Desaturasas/genética , Immunoblotting , Intrones/genética , Microscopía Fluorescente , ARN Interferente Pequeño/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa III/metabolismo , Glycine max
19.
Curr Opin Genet Dev ; 18(2): 197-203, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18337083

RESUMEN

In diverse eukaryotes, micro-RNAs (miRNAs) and small interfering RNAs (siRNAs) regulate important processes that include mRNA inactivation, viral defense, chromatin modification, and transposon silencing. Recently, nucleolus-associated Cajal bodies in plants have been implicated as sites of siRNA and miRNA biogenesis, whereas in animals siRNA and miRNA dicing occurs in the cytoplasm. The plant nucleolus also contains proteins of the nonsense-mediated mRNA decay pathway that in animals are found associated with cytoplasmic processing bodies (P-bodies). P-bodies also function in the degradation of mRNAs subjected to miRNA and siRNA targeting. Collectively, these observations suggest interesting variations in the way siRNAs and miRNAs can accomplish their similar functions in plants and animals.


Asunto(s)
Cuerpos Enrollados/genética , MicroARNs/genética , ARN Interferente Pequeño/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/genética , Humanos , Ribonucleasa III/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA