Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(4): e2306634, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37702138

RESUMEN

Chemically inert organic networks exhibiting electrical conductivity comparable to metals can advance organic electronics, catalysis, and energy storage systems. Covalent-organic frameworks (COFs) have emerged as promising materials for those applications due to their high crystallinity, porosity, and tunable functionality. However, their low conductivity has limited their practical utilization. In this study, copper-coordinated-fluorinated-phthalocyanine and 2,3,6,7-tetrahydroxy-9,10-anthraquinone-based COF (CuPc-AQ-COF) films with ultrahigh conductivity are developed. The COF films exhibit an electrical conductivity of 1.53 × 103 S m-1 and a Hall mobility of 6.02 × 102 cm2 V-1 s-1 at 298 K, reaching the level of metals. The films are constructed by linking phthalocyanines and anthraquinones through vapor-assisted synthesis. The high conductivity properties of the films are attributed to the molecular design of the CuPc-AQ-COFs and the generation of high-quality crystals via the vapor-assisted method. Density functional theory analysis reveals that an efficient donor-acceptor system between the copper-coordinated phthalocyanines and anthraquinones significantly promotes charge transfer. Overall, the CuPc-AQ-COF films set new records of COF conductivity and mobility and represent a significant step forward in the development of COFs for electronic, catalytic, and electrochemical applications.

2.
J Am Chem Soc ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37916601

RESUMEN

Lithium (Li)-metal batteries (LMBs) possess the highest theoretical energy density among current battery designs and thus have enormous potential for use in energy storage. However, the development of LMBs has been severely hindered by safety concerns arising from dendrite growth and unstable interphases on the Li anode. Covalent organic frameworks (COFs) incorporating either redox-active or anionic moieties on their backbones have high Li-ion (Li+) conductivities and mechanical/chemical stabilities, so are promising for solid electrolyte interphases (SEIs) in LMBs. Here, we synthesized anthraquinone-based silicate COFs (AQ-Si-COFs) that contained both redox-active and anionic sites via condensation of tetrahydroxyanthraquinone with silicon dioxide. The nine Li+-mediated charge/discharge processes enabled the AQ-Si-COF to demonstrate an ionic conductivity of 9.8 mS cm-1 at room temperature and a single-ion-conductive transference number of 0.92. Computational studies also supported the nine Li+ mechanism. We used AQ-Si-COF as the solid electrolyte interphase on the Li anode. The LMB cells with a LiCoO2 cathode attained a maximum reversible capacity of 188 mAh g-1 at 0.25 C during high-voltage operation. Moreover, this LMB cell demonstrated suppressed dendrite growth and stable cyclability, with its capacity decreasing by less than 3% up to 100 cycles. These findings demonstrate the effectiveness of our redox-active and anionic COFs and their practical utility as SEI in LMB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA