Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(6): 063803, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38394562

RESUMEN

Superfluorescence, a cooperative coherent spontaneous emission, is of great importance to the understanding of many-body correlation in optical processes. Even though superfluorescence has been demonstrated in many diverse systems, it is hard to observe in electron-hole plasma (EHP) due to its rapid dephasing and hence needs strong magnetic fields or complex microcavities. Herein, we report the first experimental observation of superfluorescence from EHP up to a moderate temperature of 175 K without external stimuli in a coupled metal halide perovskite quantum dots film. The EHP exhibits macroscopic quantum coherence through spontaneous synchronization. The coherence of the excited state decays by superfluorescence, which is redshifted 40 meV from the spontaneous emission with a ∼1700 times faster decay rate and exhibits quadratic fluence dependence. Notably, the excited state population's delayed growth and abrupt decay, which are strongly influenced by the pump fluence and the Burnham-Chiao ringing, are the characteristics of the superfluorescence. Our findings will open up a new frontier for cooperative emission and light beam-based technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA