Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 34(7): 8902-8919, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32519783

RESUMEN

TOKs are outwardly rectifying K+ channels in fungi with two pore-loops and eight transmembrane spans. Here, we describe the TOKs from four pathogens that cause the majority of life-threatening fungal infections in humans. These TOKs pass large currents only in the outward direction like the canonical isolate from Saccharomyces cerevisiae (ScTOK), and distinct from other K+ channels. ScTOK, AfTOK1 (Aspergillus fumigatus), and H99TOK (Cryptococcus neoformans grubii) are K+ -selective and pass current above the K+ reversal potential. CaTOK (Candida albicans) and CnTOK (Cryptococcus neoformans neoformans) pass both K+ and Na+ and conduct above a reversal potential reflecting the mixed permeability of their selectivity filter. Mutations in CaTOK and ScTOK at sites homologous to those that open the internal gates in classical K+ channels are shown to produce inward TOK currents. A favored model for outward rectification is proposed whereby the reversal potential determines ion occupancy, and thus, conductivity, of the selectivity filter gate that is coupled to an imperfectly restrictive internal gate, permitting the filter to sample ion concentrations on both sides of the membrane.


Asunto(s)
Conductividad Eléctrica , Activación del Canal Iónico/fisiología , Oocitos/fisiología , Canales de Potasio/fisiología , Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Clonación Molecular , Biología Computacional , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/metabolismo , Potenciales de la Membrana , Oocitos/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia , Xenopus laevis
2.
J Biol Chem ; 290(2): 889-903, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25425649

RESUMEN

The calcium-activated chloride channel ANO1 regulates multiple physiological processes. However, little is known about the mechanism of channel gating and regulation of ANO1 activity. Using a high-throughput, random mutagenesis-based variomics screen, we generated and functionally characterized ∼6000 ANO1 mutants and identified novel mutations that affected channel activity, intracellular trafficking, or localization of ANO1. Mutations such as S741T increased ANO1 calcium sensitivity and rendered ANO1 calcium gating voltage-independent, demonstrating a critical role of the re-entrant loop in coupling calcium and voltage sensitivity of ANO1 and hence in regulating ANO1 activation. Our data present the first unbiased and comprehensive study of the structure-function relationship of ANO1. The novel ANO1 mutants reported have diverse functional characteristics, providing new tools to study ANO1 function in biological systems, paving the path for a better understanding of the function of ANO1 and its role in health and diseases.


Asunto(s)
Canales de Cloruro/metabolismo , Canales Iónicos/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Relación Estructura-Actividad , Animales , Anoctamina-1 , Células CHO , Canales de Cloruro/química , Canales de Cloruro/genética , Cricetulus , Células HEK293 , Humanos , Canales Iónicos/química , Canales Iónicos/genética , Mutagénesis Sitio-Dirigida , Proteínas de Neoplasias/genética , Conformación Proteica
3.
Proc Natl Acad Sci U S A ; 110(11): E1026-34, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23431153

RESUMEN

The calcium-activated chloride channel anoctamin 1 (ANO1) is located within the 11q13 amplicon, one of the most frequently amplified chromosomal regions in human cancer, but its functional role in tumorigenesis has remained unclear. The 11q13 region is amplified in ∼15% of breast cancers. Whether ANO1 is amplified in breast tumors, the extent to which gene amplification contributes to ANO1 overexpression, and whether overexpression of ANO1 is important for tumor maintenance have remained unknown. We have found that ANO1 is amplified and highly expressed in breast cancer cell lines and primary tumors. Amplification of ANO1 correlated with disease grade and poor prognosis. Knockdown of ANO1 in ANO1-amplified breast cancer cell lines and other cancers bearing 11q13 amplification inhibited proliferation, induced apoptosis, and reduced tumor growth in established cancer xenografts. Moreover, ANO1 chloride channel activity was important for cell viability. Mechanistically, ANO1 knockdown or pharmacological inhibition of its chloride-channel activity reduced EGF receptor (EGFR) and calmodulin-dependent protein kinase II (CAMKII) signaling, which subsequently attenuated AKT, v-src sarcoma viral oncogene homolog (SRC), and extracellular signal-regulated kinase (ERK) activation in vitro and in vivo. Our results highlight the involvement of the ANO1 chloride channel in tumor progression and provide insights into oncogenic signaling in human cancers with 11q13 amplification, thereby establishing ANO1 as a promising target for therapy in these highly prevalent tumor types.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canales de Cloruro/metabolismo , Cromosomas Humanos Par 11/metabolismo , Amplificación de Genes , Proteínas de Neoplasias/metabolismo , Animales , Anoctamina-1 , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Canales de Cloruro/genética , Cromosomas Humanos Par 11/genética , Activación Enzimática/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Transducción de Señal/genética , Trasplante Heterólogo
4.
Biophys J ; 90(10): 3511-22, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16513781

RESUMEN

Voltage-gated Na(+) channels play a fundamental role in the excitability of nerve and muscle cells. Defects in fast Na(+) channel inactivation can cause hereditary muscle diseases with hyper- or hypoexcitability of the sarcolemma. To explore the kinetics and gating mechanisms of noninactivating muscle Na(+) channels on a molecular level, we analyzed single channel currents from wild-type and five mutant Na(+) channels. The mutations were localized in different protein regions which have been previously shown to be important for fast inactivation (D3-D4-linker, D3/S4-S5, D4/S4-S5, D4/S6) and exhibited distinct grades of defective fast inactivation with varying levels of persistent Na(+) currents caused by late channel reopenings. Different gating schemes were fitted to the data using hidden Markov models with a correction for time interval omission and compared statistically. For all investigated channels including the wild-type, two open states were necessary to describe our data. Whereas one inactivated state was sufficient to fit the single channel behavior of wild-type channels, modeling the mutants with impaired fast inactivation revealed evidence for several inactivated states. We propose a single gating scheme with two open and three inactivated states to describe the behavior of all five examined mutants. This scheme provides a biological interpretation of the collected data, based on previous investigations in voltage-gated Na(+) and K(+) channels.


Asunto(s)
Activación del Canal Iónico/fisiología , Riñón/fisiología , Modelos Biológicos , Modelos Químicos , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Canales de Sodio/química , Canales de Sodio/metabolismo , Línea Celular , Membrana Celular/fisiología , Simulación por Computador , Humanos , Canal de Sodio Activado por Voltaje NAV1.4 , Sodio/química , Sodio/metabolismo
5.
Eur Biophys J ; 34(4): 306-13, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15765226

RESUMEN

Single ion channel currents can be analysed by hidden or aggregated Markov models. A classical result from Fredkin et al. (Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, vol I, pp 269-289, 1985) states that the maximum number of identifiable parameters is bounded by 2n(o)n(c), where n(o) and n(c) denote the number of open and closed states, respectively. We show that this bound can be overcome when the probabilities of the initial distribution are known and the data consist of several sweeps.


Asunto(s)
Biofisica/métodos , Activación del Canal Iónico , Canales Iónicos/química , Simulación por Computador , Humanos , Transporte Iónico , Iones , Riñón/citología , Cinética , Funciones de Verosimilitud , Cadenas de Markov , Modelos Químicos , Modelos Estadísticos , Proteínas Musculares/química , Músculo Esquelético/citología , Canal de Sodio Activado por Voltaje NAV1.4 , Canales de Sodio/química , Factores de Tiempo , Transfección
6.
J Physiol ; 561(Pt 1): 39-51, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15459238

RESUMEN

Cytoplasmic S4-S5 loops have been shown to be involved in fast inactivation of voltage-gated ion channels. We studied mutations in these loops and their potential cooperative effects in domains D3 (N1151C, A1152C, I1160C/A) and D4 (F1473C, L1482C/A) of the human skeletal muscle Na(+) channel alpha-subunit (hNa(v)1.4) using expression in tsA201 cells and the whole cell patch-clamp technique. All cysteine mutations were accessible to intracellularly applied sulfhydryl reagents which considerably destabilized fast inactivation. For different combinations of corresponding D3/D4 double mutations, fast inactivation could be almost completely removed. Thermodynamic cycle analysis indicated an additive effect for N1151C/F1473C and a significant cooperative effect for I1160/L1482 double mutations. Application of oxidizing reagents such as Cu-phenanthroline to link two cysteines via a disulfide bridge did not reveal evidence for a direct physical interaction of cysteines in D3 and D4. In addition to the pronounced alterations of fast inactivation, mutations of I1160 shifted steady-state activation in the hyperpolarizing direction and slowed the kinetics of both activation and deactivation. Sulfhydryl reagents had charge-dependent effects on I1160C suggesting interaction with negative charges in another protein region. We conclude that fast inactivation of the Na(+) channel involves both S4-S5 loops in D3 and D4 in a cooperative manner. D3/S4-S5 also plays an important role in activation and deactivation.


Asunto(s)
Activación del Canal Iónico/fisiología , Proteínas Musculares/química , Proteínas Musculares/fisiología , Canales de Sodio/química , Canales de Sodio/fisiología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Cobre , Cisteína/genética , Humanos , Datos de Secuencia Molecular , Proteínas Musculares/genética , Mutagénesis Sitio-Dirigida , Canal de Sodio Activado por Voltaje NAV1.4 , Técnicas de Placa-Clamp , Fenantrolinas , Estructura Terciaria de Proteína , Canales de Sodio/genética , Relación Estructura-Actividad , Reactivos de Sulfhidrilo
7.
J Cell Sci ; 117(Pt 19): 4411-22, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15304527

RESUMEN

Clonogenic neural stem cells (NSCs) are self-renewing cells that maintain the capacity to differentiate into brain-specific cell types, and may also replace or repair diseased brain tissue. NSCs can be directly isolated from fetal or adult nervous tissue, or derived from embryonic stem cells. Here, we describe the efficient conversion of human adult bone marrow stromal cells (hMSC) into a neural stem cell-like population (hmNSC, for human marrow-derived NSC-like cells). These cells grow in neurosphere-like structures, express high levels of early neuroectodermal markers, such as the proneural genes NeuroD1, Neurog2, MSl1 as well as otx1 and nestin, but lose the characteristics of mesodermal stromal cells. In the presence of selected growth factors, hmNSCs can be differentiated into the three main neural phenotypes: astroglia, oligodendroglia and neurons. Clonal analysis demonstrates that individual hmNSCs are multipotent and retain the capacity to generate both glia and neurons. Our cell culture system provides a powerful tool for investigating the molecular mechanisms of neural differentiation in adult human NSCs. hmNSCs may therefore ultimately help to treat acute and chronic neurodegenerative diseases.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular/fisiología , Neuronas/citología , Células Madre/citología , Células del Estroma/citología , Adolescente , Antígenos de Diferenciación/metabolismo , Células de la Médula Ósea/metabolismo , Cartilla de ADN/química , Humanos , Neuronas/metabolismo , Células Madre/metabolismo , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA