Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cell ; 81(4): 830-844.e13, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453168

RESUMEN

The MYC oncoprotein globally affects the function of RNA polymerase II (RNAPII). The ability of MYC to promote transcription elongation depends on its ubiquitylation. Here, we show that MYC and PAF1c (polymerase II-associated factor 1 complex) interact directly and mutually enhance each other's association with active promoters. PAF1c is rapidly transferred from MYC onto RNAPII. This transfer is driven by the HUWE1 ubiquitin ligase and is required for MYC-dependent transcription elongation. MYC and HUWE1 promote histone H2B ubiquitylation, which alters chromatin structure both for transcription elongation and double-strand break repair. Consistently, MYC suppresses double-strand break accumulation in active genes in a strictly PAF1c-dependent manner. Depletion of PAF1c causes transcription-dependent accumulation of double-strand breaks, despite widespread repair-associated DNA synthesis. Our data show that the transfer of PAF1c from MYC onto RNAPII efficiently couples transcription elongation with double-strand break repair to maintain the genomic integrity of MYC-driven tumor cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Elongación de la Transcripción Genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Línea Celular Tumoral , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
2.
Mol Cell ; 74(3): 421-435.e10, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30926243

RESUMEN

Deubiquitinases have emerged as promising drug targets for cancer therapy. The two DUBs USP25 and USP28 share high similarity but vary in their cellular functions. USP28 is known for its tumor-promoting role, whereas USP25 is a regulator of the innate immune system and, recently, a role in tumorigenesis was proposed. We solved the structures of the catalytic domains of both proteins and established substantial differences in their activities. While USP28 is a constitutively active dimer, USP25 presents an auto-inhibited tetramer. Our data indicate that the activation of USP25 is not achieved through substrate or ubiquitin binding. USP25 cancer-associated mutations lead to activation in vitro and in vivo, thereby providing a functional link between auto-inhibition and the cancer-promoting role of the enzyme. Our work led to the identification of significant differences between USP25 and USP28 and provided the molecular basis for the development of new and highly specific anti-cancer drugs.


Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , Ubiquitina Tiolesterasa/genética , Secuencia de Aminoácidos/genética , Dominio Catalítico/genética , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/genética , Humanos , Mutación/genética , Neoplasias/tratamiento farmacológico , Unión Proteica/genética , Conformación Proteica , Multimerización de Proteína/genética , Ubiquitina/genética , Ubiquitina Tiolesterasa/química
3.
Nucleic Acids Res ; 52(6): 3011-3030, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38227944

RESUMEN

DNA replication is a major source of endogenous DNA damage in tumor cells and a key target of cellular response to genotoxic stress. DNA replication can be deregulated by oncoproteins, such as transcription factor MYC, aberrantly activated in many human cancers. MYC is stringently regulated by the ubiquitin system - for example, ubiquitination controls recruitment of the elongation factor PAF1c, instrumental in MYC activity. Curiously, a key MYC-targeting deubiquitinase USP28 also controls cellular response to DNA damage via the mediator protein 53BP1. USP28 forms stable dimers, but the biological role of USP28 dimerization is unknown. We show here that dimerization limits USP28 activity and restricts recruitment of PAF1c by MYC. Expression of monomeric USP28 stabilizes MYC and promotes PAF1c recruitment, leading to ectopic DNA synthesis and replication-associated DNA damage. USP28 dimerization is stimulated by 53BP1, which selectively binds USP28 dimers. Genotoxic stress diminishes 53BP1-USP28 interaction, promotes disassembly of USP28 dimers and stimulates PAF1c recruitment by MYC. This triggers firing of DNA replication origins during early response to genotoxins and exacerbates DNA damage. We propose that dimerization of USP28 prevents ectopic DNA replication at transcriptionally active chromatin to maintain genome stability.


Asunto(s)
Daño del ADN , Humanos , Enzimas Desubicuitinizantes/genética , ADN/metabolismo , Neoplasias , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
4.
Mol Cell ; 61(1): 54-67, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26687678

RESUMEN

MYC is an unstable protein, and its turnover is controlled by the ubiquitin system. Ubiquitination enhances MYC-dependent transactivation, but the underlying mechanism remains unresolved. Here we show that MYC proteasomal turnover is dispensable for loading of RNA polymerase II (RNAPII). In contrast, MYC turnover is essential for recruitment of TRRAP, histone acetylation, and binding of BRD4 and P-TEFb to target promoters, leading to phosphorylation of RNAPII and transcriptional elongation. In the absence of histone acetylation and P-TEFb recruitment, MYC associates with the PAF1 complex (PAF1C) through a conserved domain in the MYC amino terminus ("MYC box I"). Depletion of the PAF1C subunit CDC73 enhances expression of MYC target genes, suggesting that the MYC/PAF1C complex can inhibit transcription. Because several ubiquitin ligases bind to MYC via the same domain ("MYC box II") that interacts with TRRAP, we propose that degradation of MYC limits the accumulation of MYC/PAF1C complexes during transcriptional activation.


Asunto(s)
Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Elongación de la Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación , Acetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular , Proliferación Celular , Ensamble y Desensamble de Cromatina , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Complejos Multiproteicos , Mutación , Proteínas Nucleares/genética , Fosfoproteínas/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Proteolisis , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Polimerasa II/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Transfección , Proteínas Supresoras de Tumor/genética
5.
Semin Cancer Biol ; 36: 62-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26459133

RESUMEN

The F-box protein Fbw7 targets for degradation critical cellular regulators, thereby controlling essential processes in cellular homeostasis, including cell cycle, differentiation and apoptosis. Most Fbw7 substrates are strongly associated with tumorigenesis and Fbw7 can either suppress or promote tumor development in mouse models. Fbw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates. Here we highlight recent studies on the role of Fbw7 in controlling tumorigenesis and on the mechanisms that modulate Fbw7 function.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas F-Box/química , Proteína 7 que Contiene Repeticiones F-Box-WD , Regulación Neoplásica de la Expresión Génica , Homeostasis , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Proteolisis , Transducción de Señal , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
6.
PLoS Pathog ; 9(8): e1003554, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950719

RESUMEN

Host colonization by lymphotropic γ-herpesviruses depends critically on expansion of viral genomes in germinal center (GC) B-cells. Myc is essential for the formation and maintenance of GCs. Yet, the role of Myc in the pathogenesis of γ-herpesviruses is still largely unknown. In this study, Myc was shown to be essential for the lymphotropic γ-herpesvirus MuHV-4 biology as infected cells exhibited increased expression of Myc signature genes and the virus was unable to expand in Myc defficient GC B-cells. We describe a novel strategy of a viral protein activating Myc through increased protein stability resulting in increased progression through the cell cycle. This is acomplished by modulating a physiological post-translational regulatory pathway of Myc. The molecular mechanism involves Myc heterotypic poly-ubiquitination mediated via the viral E3 ubiquitin-ligase mLANA protein. EC5S(mLANA) modulates cellular control of Myc turnover by antagonizing SCF(Fbw7) mediated proteasomal degradation of Myc, mimicking SCF(ß-TrCP). The findings here reported reveal that modulation of Myc is essential for γ-herpesvirus persistent infection, establishing a link between virus induced lymphoproliferation and disease.


Asunto(s)
Infecciones por Herpesviridae/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Rhadinovirus/metabolismo , Infecciones Tumorales por Virus/metabolismo , Ubiquitinación , Proteínas Virales/metabolismo , Animales , Línea Celular , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/patología , Humanos , Ratones , Ratones Noqueados , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Rhadinovirus/genética , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/genética
7.
Nat Cell Biol ; 9(7): 765-74, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17558397

RESUMEN

The MYC proto-oncogene encodes a transcription factor that has been implicated in the genesis of many human tumours. Here, we used a bar-code short hairpin RNA (shRNA) screen to identify multiple genes that are required for MYC function. One of these genes encodes USP28, an ubiquitin-specific protease. USP28 is required for MYC stability in human tumour cells. USP28 binds to MYC through an interaction with FBW7alpha, an F-box protein that is part of an SCF-type ubiquitin ligase. Therefore, it stabilizes MYC in the nucleus, but not in the nucleolus, where MYC is degraded by FBW7gamma. High expression levels of USP28 are found in colon and breast carcinomas, and stabilization of MYC by USP28 is essential for tumour-cell proliferation.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina Tiolesterasa/fisiología , Adenocarcinoma/metabolismo , Adenocarcinoma/secundario , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Proto-Oncogenes Mas
8.
Nat Commun ; 14(1): 5147, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620345

RESUMEN

Deregulation of RNA Polymerase II (RNAPII) by oncogenic signaling leads to collisions of RNAPII with DNA synthesis machinery (transcription-replication conflicts, TRCs). TRCs can result in DNA damage and are thought to underlie genomic instability in tumor cells. Here we provide evidence that elongating RNAPII nucleates activation of the ATM kinase at TRCs to stimulate DNA repair. We show the ATPase WRNIP1 associates with RNAPII and limits ATM activation during unperturbed cell cycle. WRNIP1 binding to elongating RNAPII requires catalytic activity of the ubiquitin ligase HUWE1. Mutation of HUWE1 induces TRCs, promotes WRNIP1 dissociation from RNAPII and binding to the replisome, stimulating ATM recruitment and activation at RNAPII. TRCs and translocation of WRNIP1 are rapidly induced in response to hydroxyurea treatment to activate ATM and facilitate subsequent DNA repair. We propose that TRCs can provide a controlled mechanism for stalling of replication forks and ATM activation, instrumental in cellular response to replicative stress.


Asunto(s)
ARN Polimerasa II , Transducción de Señal , Mutación , Ciclo Celular , División Celular , Hidrolasas
9.
Nat Commun ; 14(1): 5143, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612308

RESUMEN

Replicative stress promotes genomic instability and tumorigenesis but also presents an effective therapeutic endpoint, rationalizing detailed analysis of pathways that control DNA replication. We show here that the transcription factor E2f4 recruits the DNA helicase Recql to facilitate progression of DNA replication forks upon drug- or oncogene-induced replicative stress. In unperturbed cells, the Trim33 ubiquitin ligase targets E2f4 for degradation, limiting its genomic binding and interactions with Recql. Replicative stress blunts Trim33-dependent ubiquitination of E2f4, which stimulates transient Recql recruitment to chromatin and facilitates recovery of DNA synthesis. In contrast, deletion of Trim33 induces chronic genome-wide recruitment of Recql and strongly accelerates DNA replication under stress, compromising checkpoint signaling and DNA repair. Depletion of Trim33 in Myc-overexpressing cells leads to accumulation of replication-associated DNA damage and delays Myc-driven tumorigenesis. We propose that the Trim33-E2f4-Recql axis controls progression of DNA replication forks along transcriptionally active chromatin to maintain genome integrity.


Asunto(s)
Predisposición Genética a la Enfermedad , RecQ Helicasas , Humanos , Cromatina/genética , Equipo de Protección Personal , Carcinogénesis , Transformación Celular Neoplásica
10.
Cell Death Differ ; 30(7): 1710-1725, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202505

RESUMEN

SREBP2 is a master regulator of the mevalonate pathway (MVP), a biosynthetic process that drives the synthesis of dolichol, heme A, ubiquinone and cholesterol and also provides substrates for protein prenylation. Here, we identify SREBP2 as a novel substrate for USP28, a deubiquitinating enzyme that is frequently upregulated in squamous cancers. Our results show that silencing of USP28 reduces expression of MVP enzymes and lowers metabolic flux into this pathway. We also show that USP28 binds to mature SREBP2, leading to its deubiquitination and stabilisation. USP28 depletion rendered cancer cells highly sensitive to MVP inhibition by statins, which was rescued by the addition of geranyl-geranyl pyrophosphate. Analysis of human tissue microarrays revealed elevated expression of USP28, SREBP2 and MVP enzymes in lung squamous cell carcinoma (LSCC) compared to lung adenocarcinoma (LADC). Moreover, CRISPR/Cas-mediated deletion of SREBP2 selectively attenuated tumour growth in a KRas/p53/LKB1 mutant mouse model of lung cancer. Finally, we demonstrate that statins synergise with a dual USP28/25 inhibitor to reduce viability of SCC cells. Our findings suggest that combinatorial targeting of MVP and USP28 could be a therapeutic strategy for the treatment of squamous cell carcinomas.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Ácido Mevalónico/metabolismo , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/genética , Ubiquitina Tiolesterasa/metabolismo
11.
Cells ; 10(9)2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34571962

RESUMEN

Von Hippel-Lindau disease (VHL) is a rare hereditary disease characterized by the predisposal to develop different types of highly vascularized tumors. VHL patients carry a VHL mutation that causes partial lack of functional VHL protein (pVHL) in all cells, and a total lack thereof in cells harboring a second hit mutation. Absence of pVHL generates a prolonged state of pseudo-hypoxia in the cell due to accumulation of hypoxia inducible factor, an important transcription factor regulating pro-tumorigenic genes. The work here presented focuses on characterizing the endothelium of VHL patients, by means of blood outgrowth endothelial cells (BOECs). Transcriptome analysis of VHL-derived BOECs, further supported by in vitro assays, shows that these cells are at a disadvantage, as evidenced by loss of cell adhesion capacity, angiogenesis defects, and immune response and oxidative metabolic gene downregulation, which induce oxidative stress. These results suggest that the endothelium of VHL patients is functionally compromised and more susceptible to tumor development. These findings contribute to shedding light on the vascular landscape of VHL patients preceding the second hit mutation in the VHL gene. This knowledge could be useful in searching for new therapies for these patients and other vascular diseases.


Asunto(s)
Células Endoteliales/patología , Neovascularización Patológica , Enfermedad de von Hippel-Lindau/patología , Estudios de Casos y Controles , Adhesión Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Mutación , Neovascularización Patológica/genética , Estrés Oxidativo , Fenotipo , Transducción de Señal , Transcriptoma , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/inmunología , Enfermedad de von Hippel-Lindau/metabolismo
12.
Nat Cancer ; 2(2): 201-217, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-35122079

RESUMEN

The success of molecular therapies targeting specific metabolic pathways in cancer is often limited by the plasticity and adaptability of metabolic networks. Here we show that pharmacologically induced lipotoxicity represents a promising therapeutic strategy for the treatment of hepatocellular carcinoma (HCC). LXRα-induced liponeogenesis and Raf-1 inhibition are synthetic lethal in HCC owing to a toxic accumulation of saturated fatty acids. Raf-1 was found to bind and activate SCD1, and conformation-changing DFG-out Raf inhibitors could disrupt this interaction, thereby blocking fatty acid desaturation and inducing lethal lipotoxicity. Studies in genetically engineered and nonalcoholic steatohepatitis-induced HCC mouse models and xenograft models of human HCC revealed that therapies comprising LXR agonists and Raf inhibitors were well tolerated and capable of overcoming therapy resistance in HCC. Conceptually, our study suggests pharmacologically induced lipotoxicity as a new mode for metabolic targeting of liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo
13.
Aging (Albany NY) ; 12(6): 5566-5584, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32229707

RESUMEN

Homo sapiens and naked mole rats (Heterocephalus glaber) are vivid examples of social mammals that differ from their relatives in particular by an increased lifespan and a large number of neotenic features. An important fact for biogerontology is that the mortality rate of H. glaber (a maximal lifespan of more than 32 years, which is very large for such a small rodent) negligibly grows with age. The same is true for modern people in developed countries below the age of 60. It is important that the juvenilization of traits that separate humans from chimpanzees evolved over thousands of generations and millions of years. Rapid advances in technology resulted in a sharp increase in the life expectancy of human beings during the past 100 years. Currently, the human life expectancy has exceeded 80 years in developed countries. It cannot be excluded that the potential for increasing life expectancy by an improvement in living conditions will be exhausted after a certain period of time. New types of geroprotectors should be developed that protect not only from chronic phenoptosis gradual poisoning of the body with reactive oxygen species (ROS) but also from acute phenoptosis, where strong increase in the level of ROS immediately kills an already aged individual. Geroprotectors might be another anti-aging strategy along with neoteny (a natural physiological phenomenon) and technical progress.


Asunto(s)
Envejecimiento/fisiología , Longevidad/fisiología , Animales , Femenino , Humanos , Masculino , Ratas Topo/fisiología , Especies Reactivas de Oxígeno
14.
Neuro Oncol ; 21(10): 1273-1283, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31222332

RESUMEN

BACKGROUND: Medical treatment in Cushing's disease (CD) is limited due to poor understanding of its pathogenesis. Pathogenic variants of ubiquitin specific peptidase 8 (USP8) have been confirmed as causative in around half of corticotroph tumors. We aimed to further characterize the molecular landscape of those CD tumors lacking USP8 mutations in a large cohort of patients. METHODS: Exome sequencing was performed on 18 paired tumor-blood samples with wild-type USP8 status. Candidate gene variants were screened by Sanger sequencing in 175 additional samples. The most frequent variant was characterized by further functional in vitro assays. RESULTS: Recurrent somatic hotspot mutations in another deubiquitinase, USP48, were found in 10.3% of analyzed samples. Several possibly damaging variants were found in TP53 in 6 of 18 samples. USP48 variants were associated with smaller tumors and trended toward higher frequency in female patients. They also changed the structural conformation of USP48 and increased its catalytic activity toward its physiological substrates histone 2A and zinc finger protein Gli1, as well as enhanced the stimulatory effect of corticotropin releasing hormone (CRH) on pro-opiomelanocortin production and adrenocorticotropic hormone secretion. CONCLUSIONS: USP48 pathogenic variants are relatively frequent in USP8 wild-type tumors and enhance CRH-induced hormone production in a manner coherent with sonic hedgehog activation. In addition, TP53 pathogenic variants may be more frequent in larger CD tumors than previously reported.


Asunto(s)
Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/genética , Proteína p53 Supresora de Tumor/genética , Proteasas Ubiquitina-Específicas/genética , Adulto , Análisis Mutacional de ADN , Endopeptidasas , Complejos de Clasificación Endosomal Requeridos para el Transporte , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Ubiquitina Tiolesterasa
15.
Elife ; 62017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28193319

RESUMEN

The human ubiquitin ligase HUWE1 has key roles in tumorigenesis, yet it is unkown how its activity is regulated. We present the crystal structure of a C-terminal part of HUWE1, including the catalytic domain, and reveal an asymmetric auto-inhibited dimer. We show that HUWE1 dimerizes in solution and self-associates in cells, and that both occurs through the crystallographic dimer interface. We demonstrate that HUWE1 is inhibited in cells and that it can be activated by disruption of the dimer interface. We identify a conserved segment in HUWE1 that counteracts dimer formation by associating with the dimerization region intramolecularly. Our studies reveal, intriguingly, that the tumor suppressor p14ARF binds to this segment and may thus shift the conformational equilibrium of HUWE1 toward the inactive state. We propose a model, in which the activity of HUWE1 underlies conformational control in response to physiological cues-a mechanism that may be exploited for cancer therapy.


Asunto(s)
Multimerización de Proteína , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteína p14ARF Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor
16.
Oncogene ; 24(56): 8326-37, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16103876

RESUMEN

The Myc/Max/Mad network of transcription factors regulates cell proliferation, differentiation, and transformation. Similar to other proteins of the network, Mnt forms heterodimers with Max and binds CACGTG E-Box elements. Transcriptional repression by Mnt is mediated through association with mSin3, and deletion of the mSin3-interacting domain (SID) converts Mnt to a transcriptional activator. Mnt is coexpressed with Myc in proliferating cells and has been suggested to be a modulator of Myc function. We report that Mnt is expressed both in growth-arrested and proliferating mouse fibroblasts and is phosphorylated when resting cells are induced to re-enter the cell cycle. Importantly, the interaction between Mnt and mSin3 is disrupted upon serum stimulation resulting in decreased Mnt-associated HDAC activity. Furthermore, we demonstrate that Mnt binds and recruits mSin3 to the Myc target gene cyclin D2 in quiescent mouse fibroblasts. Interference with Mnt expression by RNAi resulted in upregulation of cyclin D2 expression in growth-arrested fibroblasts, supporting the view that Mnt represses cyclin D2 transcription in quiescent cells. Our data suggest a model in which phosphorylation of Mnt at cell cycle entry results in disruption of Mnt-mSin3-HDAC1 interaction, which allows induction of Myc target genes by release of Mnt-mediated transcriptional repression.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Ciclo Celular/fisiología , Proteínas Represoras/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/antagonistas & inhibidores , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular Transformada , Proliferación Celular , Ciclina D2 , Ciclinas/biosíntesis , Ciclinas/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica/fisiología , Células HL-60 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Humanos , Ratones , Células 3T3 NIH , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica/genética , Proteínas Proto-Oncogénicas c-myc/fisiología , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/biosíntesis , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3 , Regulación hacia Arriba
17.
Oncogene ; 21(3): 447-59, 2002 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-11821957

RESUMEN

The Myc/Max/Mad network of transcriptional regulatory proteins plays an essential role in cell proliferation, growth, apoptosis, and differentiation. Whereas Myc proteins affect cell cycle progression positively, Mad proteins are negative regulators of cell proliferation. It has been shown in several in vitro systems that Mad proteins antagonize c-Myc functions. In this report we describe the inhibition of tumor cell outgrowth in vivo by Mad1 expression. Transformed cell lines were generated by co-transfection of c-myc, c-H-ras, and a chimeric mad1ER construct into primary rat embryo cells (MRMad1ER cells). Activation of Mad1 by 4-Hydroxy-Tamoxifen (OHT) resulted in abrogation of telomerase activity, reduced cloning efficiency, and decreased proportion of cells in S phase. Injection of MRMad1ER cells into syngenic rats induced aggressively growing tumors after a short latency period. This tumor growth was inhibited by OHT-treatment of animals, with the extent of inhibition correlating with the amount of OHT injected. No effect of OHT on tumor growth was observed with similarly transformed Myc/Ras cell lines which did not express Mad1ER. These data demonstrate that Mad1 is able to suppress Myc/Ras-mediated transformation under in vivo conditions.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Genes myc/genética , Genes ras/genética , Fosfoproteínas/metabolismo , Proteínas Represoras/metabolismo , Tamoxifeno/análogos & derivados , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Western Blotting , Proteínas de Ciclo Celular/metabolismo , División Celular/efectos de los fármacos , División Celular/genética , Línea Celular Transformada , Transformación Celular Neoplásica/genética , Células Cultivadas , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Masculino , Proteínas Nucleares , Fosfoproteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas F344 , Proteínas Represoras/genética , Tamoxifeno/farmacología , Telomerasa/antagonistas & inhibidores , Telomerasa/metabolismo , Transgenes/genética
18.
Mol Cell Oncol ; 2(3): e995041, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27308481

RESUMEN

The Usp28 deubiquitinase antagonizes Fbw7-mediated turnover of multiple oncoproteins, including Myc, Jun, and Notch, and promotes tumorigenesis in the intestine. Our recent study reveals that Usp28 also counteracts autocatalytic ubiquitination of Fbw7, suggesting a complex role for Usp28 in the regulation of Fbw7 activity and tumor development.

19.
Cancer Res ; 75(7): 1181-6, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25716680

RESUMEN

The stability of several oncoproteins, including c-Myc, is regulated by ubiquitin-dependent degradation mediated by the SCF(Fbw7) ubiquitin ligase. This activity is antagonized by the deubiquitinase Usp28, which is highly expressed in murine and human intestinal cancers. Usp28 was previously shown to interact with its substrates via a "piggyback" interaction with Fbw7, which suggested that Fbw7 is required for Usp28 activity. Unexpectedly, we found that genetic deletion of Usp28 rescued the lethality of Fbw7-deficient primary fibroblasts. Moreover, Usp28 inactivation in the intestine (Usp28(ΔIEC)) ameliorated the hyperproliferation and the impaired goblet and Paneth cell differentiation observed in Fbw7(ΔIEC) mice. The aggressive intestinal tumor formation of APC(Min/+); Fbw7(ΔIEC) mice was restrained when Usp28 was inactivated concomitantly. In both fibroblasts and intestinal cells, Usp28 deficiency corrected the accumulation of SCF(Fbw7) substrate proteins, including NICD1, c-Jun, and c-Myc. These findings suggested that Usp28 function does not depend on the presence of Fbw7, but instead independently recognizes and deubiquitylates the same substrates as SCF(Fbw7). Fbw7 binds to a phosphorylated motif termed the phosphodegron and we found that Usp28 also interacted with this same motif, but only when it is unphosphorylated, offering a mechanistic explanation for identical substrate selection by Fbw7 and Usp28. Our results indicate an unusually direct antagonism between an E3 ligase and a deubiquitinase, Fbw7 and Usp28, in modulating intestinal homeostasis and cancer.


Asunto(s)
Proteínas F-Box/metabolismo , Homeostasis , Neoplasias Intestinales/metabolismo , Ubiquitina Tiolesterasa/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Carcinogénesis/metabolismo , Diferenciación Celular , Proliferación Celular , Proteína 7 que Contiene Repeticiones F-Box-WD , Células HCT116 , Humanos , Mucosa Intestinal/metabolismo , Intestinos/patología , Ratones Transgénicos , Ubiquitinación
20.
Cell Rep ; 9(3): 1099-109, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25437563

RESUMEN

Fbw7, the substrate recognition subunit of SCF(Fbw7) ubiquitin ligase, mediates the turnover of multiple proto-oncoproteins and promotes its own degradation. Fbw7-dependent substrate ubiquitination is antagonized by the Usp28 deubiquitinase. Here, we show that Usp28 preferentially antagonizes autocatalytic ubiquitination and stabilizes Fbw7, resulting in dose-dependent effects in Usp28 knockout mice. Monoallelic deletion of Usp28 maintains stable Fbw7 but drives Fbw7 substrate degradation. In contrast, complete knockout triggers Fbw7 degradation and leads to the accumulation of Fbw7 substrates in several tissues and embryonic fibroblasts. On the other hand, overexpression of Usp28 stabilizes both Fbw7 and its substrates. Consequently, both complete loss and ectopic expression of Usp28 promote Ras-driven oncogenic transformation. We propose that dual regulation of Fbw7 activity by Usp28 is a safeguard mechanism for maintaining physiological levels of proto-oncogenic Fbw7 substrates, which is equivalently disrupted by loss or overexpression of Usp28.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas F-Box/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Alelos , Animales , Biocatálisis , Proliferación Celular , Transformación Celular Neoplásica/patología , Proteína 7 que Contiene Repeticiones F-Box-WD , Eliminación de Gen , Células HeLa , Humanos , Ratones Noqueados , Modelos Biológicos , Especificidad de Órganos , Estabilidad Proteica , Proteolisis , Especificidad por Sustrato , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA