Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nano Lett ; 20(2): 953-962, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31869233

RESUMEN

While various electronic components based on carbon nanotubes (CNTs) have already been demonstrated, the realization of miniature electromagnetic coils based on CNTs remains a challenge. Coils made of single-wall CNTs with accessible ends for contacting have been recently demonstrated but were found unsuitable to act as electromagnetic coils because of electrical shorting between their turns. Coils made of a few-wall CNT could in principle allow an insulated flow of current and thus be potential candidates for realizing CNT-based electromagnetic coils. However, no such CNT structure has been produced so far. Here, we demonstrate the formation of few-wall CNT coils and characterize their structural, optical, vibrational, and electrical properties using experimental and computational tools. The coils are made of CNTs with 2, 3, or 4 walls. They have accessible ends for electrical contacts and low defect densities. The coil diameters are on the order of one micron, like those of single-wall CNT coils, despite the higher rigidity of few-wall CNTs. Coils with as many as 163 turns were found, with their turns organized in a rippled raft configuration. These coils are promising candidates for a variety of miniature devices based on electromagnetic coils, such as electromagnets, inductors, transformers, and motors. Being chirally and enantiomerically pure few-wall CNT bundles, they are also ideal for fundamental studies of interwall coupling and superconductivity in CNTs.

2.
Nano Lett ; 18(1): 424-433, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29210586

RESUMEN

All-inorganic lead halide perovskite nanowires have been the focus of increasing interest since they exhibit improved stability compared to their hybrid organic-inorganic counterparts, while retaining their interesting optical and optoelectronic properties. Arrays of surface-guided nanowires with controlled orientations and morphology are promising as building blocks for various applications and for systematic research. We report the horizontal and aligned growth of CsPbBr3 nanowires with a uniform crystallographic orientation on flat and faceted sapphire surfaces to form arrays with 6-fold and 2-fold symmetries, respectively, along specific directions of the sapphire substrate. We observed waveguiding behavior and diameter-dependent photoluminescence emission well beyond the quantum confinement regime. The arrays were easily integrated into multiple devices, displaying p-type behavior and photoconductivity. Photodetectors based on those nanowires exhibit the fastest rise and decay times for any CsPbBr3-based photodetectors reported so far. One-dimensional arrays of halide perovskite nanowires are a promising platform for investigating the intriguing properties and potential applications of these unique materials.

3.
Chemistry ; 24(44): 11354-11363, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-29873843

RESUMEN

The synthesis and characterization of nanotubes from misfit layered compounds (MLCs) of the type (LnS)1+y TaS2 (denoted here as LnS-TaS2 ; Ln=Pr, Sm, Gd, and Yb), not reported before, are described (the bulk compound YbS-LaS2 was not previously documented). Transmission electron microscopy and selected area electron diffraction showed that the interlayer spacing along the c axis decreased with an increase in the atomic number of the lanthanide atom, which suggested tighter interaction between the LnS layer and TaS2 for the late lanthanides. The Raman spectra of the tubules were studied and compared to those of the bulk MLC compounds. Similar to the bulk MLCs, the Raman spectra could be divided into the low-frequency modes (110-150 cm-1 ) of the LnS lattice and the high-frequency modes (250-400 cm-1 ) of the TaS2 lattice. The Raman spectra indicated that the vibrational lattice modes of the strained layers in the tubes were stiffer than those in the bulk compounds. Furthermore, the modes of the late lanthanides were higher in energy than those of the earlier lanthanides, which suggested larger charge transfer between the LnS and TaS2 layers for the late lanthanides. Polarized Raman measurements showed the expected binodal intensity profile (antenna effect). The intensity ratio of the Raman signal showed that the E2g mode of TaS2 was more sensitive to the light-polarization effect than its A1g mode. These nanotubes are expected to reveal interesting low-temperature quasi-1D transport behavior.

4.
Langmuir ; 34(7): 2464-2470, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29334737

RESUMEN

We report here a new methodology for the formation of freestanding nanotubes composed of individual gold nanoparticles (NPs) cross-linked by coordination complexes or porphyrin molecules using WS2 nanotubes (INT-WS2) as a template. Our method consists of three steps: (i) coverage of these robust inorganic materials with monodispersed and dense monolayers of gold NPs, (ii) formation of a molecular AuNP network by exposing these decorated tubes to solutions containing a ruthenium polypyridyl complex or meso-tetra(4-pyridyl)porphyrin, and (iii) removal of the INT-WS2 template with a hydrogen peroxide solution. Nanoindentation of the template-free AuNP tubes with atomic force microscopy indicates a radial elastic modulus of 4 GPa. The template-free molecular AuNP tubes are characterized using scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, and micro-Raman spectroscopy. The methodology provides a convenient and scalable strategy for the realization of molecular AuNP tubes with a defined length and diameter, depending on the dimensions of the template.

5.
Nano Lett ; 17(2): 842-850, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28094977

RESUMEN

The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.

6.
J Am Chem Soc ; 139(44): 15958-15967, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29035565

RESUMEN

Tri-gate transistors offer better performance than planar transistors by exerting additional gate control over a channel from two lateral sides of semiconductor nanowalls (or "fins"). Here we report the bottom-up assembly of aligned CdS nanowalls by a simultaneous combination of horizontal catalytic vapor-liquid-solid growth and vertical facet-selective noncatalytic vapor-solid growth and their parallel integration into tri-gate transistors and photodetectors at wafer scale (cm2) without postgrowth transfer or alignment steps. These tri-gate transistors act as enhancement-mode transistors with an on/off current ratio on the order of 108, 4 orders of magnitude higher than the best results ever reported for planar enhancement-mode CdS transistors. The response time of the photodetector is reduced to the submicrosecond level, 1 order of magnitude shorter than the best results ever reported for photodetectors made of bottom-up semiconductor nanostructures. Guided semiconductor nanowalls open new opportunities for high-performance 3D nanodevices assembled from the bottom up.

7.
Nanotechnology ; 28(24): 24LT03, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28475105

RESUMEN

Nanoparticles, and more specifically gold nanoparticles (AuNPs), have attracted much scientific and technological interest in the last few decades. Their popularity is attributed to their unique optical, catalytic, electrical and magnetic properties when compared with the bulk. However, one of the main problems with AuNPs is their long-term stability. Two-dimensional materials like MoS2 (WS2) are semiconductors that exhibit a combination of properties which make them suitable for electronic, optical and (photo)catalytic devices. Few-layer MoS2 (WS2) nanoparticles (NPs), and in particular single-layer ones, show intriguing optical and electrical properties which are very different from those of the bulk compounds. Here we demonstrate the synthesis of AuNPs sheathed by a single layer of MoS2 (WS2), i.e. a core-shell nanostructure (AuNP@1L-MoS2). The hybrid NPs exhibit optical properties that are different from those of either constituent and are amenable for modulation via their chemistry, offering a myriad of applications.

8.
Nano Lett ; 16(4): 2152-8, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26708150

RESUMEN

Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos.

9.
J Am Chem Soc ; 137(1): 226-31, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25469935

RESUMEN

Despite the tremendous progress made in the design of supramolecular and inorganic materials, it still remains a great challenge to obtain uniform structures with tailored size and shape. Metal-organic frameworks and infinite coordination polymers are examples of rapidly emerging materials with useful properties, yet limited morphological control. In this paper, we report the solvothermal synthesis of diverse metal-organic (sub)-microstructures with a high degree of uniformity. The porous and thermally robust monodisperse crystalline solids consist of tetrahedral polypyridyl ligands and nickel or copper ions. Our bottom-up approach demonstrates the direct assembly of these materials without the addition of any surfactants or modulators. Reaction parameters in combination with molecular structure encoding are the keys to size-shape control and structural uniformity of our metal-organic materials.

10.
Small ; 11(32): 3942-53, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25940945

RESUMEN

Galvanic replacement reactions (GRRs) on nanoparticles (NPs) are typically performed between two metals, i.e., a solid metal NP and a replacing salt solution of a more noble metal. The solution pH in GRRs is commonly considered an irrelevant parameter. Yet, the solution pH plays a major role in GRRs involving metal oxide NPs. Here, Cu(2)O nanocrystals (NCs) are studied as galvanic replacement (GR) precursors, undergoing replacement by gold and palladium, with the resulting nanostructures showing a strong dependence on the pH of the replacing metal salt solution. GRRs are reported for the first time on supported (chemically deposited) oxide NCs and the results are compared with those obtained with corresponding colloidal systems. Control of the pH enables production of different nanostructures, from metal-decorated Cu(2)O NCs to uniformly coated Cu(2)O-in-metal (Cu(2)O@Me) core-shell nanoarchitectures. Improved metal nucleation efficiencies at low pHs are attributed to changes in the Cu(2)O surface charge resulting from protonation of the oxide surface. GR followed by etching of the Cu(2)O cores provides metal nanocages that collapse upon drying; the latter is prevented using a sol-gel silica overlayer stabilizing the metal nanocages. Metal-replaced Cu(2)O NCs and their corresponding stabilized nanostructures may be useful as photocatalysts, electrocatalysts, and nanosensors.

11.
Acc Chem Res ; 47(2): 406-16, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24044507

RESUMEN

Carbon fullerenes and nanotubes revolutionized understandingof the reactivity of nanoscale compounds. Subsequently, our group and others discovered analogous inorganic compounds with hollow, closed nanostructures. Such inorganic nanostructures offer many applications, particularly in the energy and electronics industries. One way to create inorganic nanostructures is via misfit layer-ed compounds (MLC), which are stacks of alternating two-dimensional molecular slabs, typically held together via weak van der Waals forces. They contain "misfits" in their a-b plane structures that can make them unstable, leading to collapse of the slabs into tubular nanostructures. For example, metal chalcogenide MLCs of the general formula (MX)1+y/TX2 (M = Sn, Pb, Bi, Sb, and other rare earths; T = Sn, Ti, V, Cr, Nb, Ta, etc.; X = S or Se) consist of a superstructure of alternating layers where the MX unit belongs to a (distorted NaCl) orthorhombic symmetry group (O), the TX2 layer possesses trigonal (T) or octahedral symmetry, and the two layers are held together via both van der Waals and polar forces. A misfit in the a axis or both a and b axes of the two sublattices may lead to the formation of nanostructures as the lattices relax via scrolling. Previous research has also shown that the abundance of atoms with dangling bonds in the rims makes nanoparticles of compounds with layered structure unstable in the planar form, and they tend to fold into hollow closed structures such as nanotubes. This Account shows that combining these two triggers, misfits and dangling bond annihilation in the slab rims, leads to new kinds of nanotubes from MLCs. In particular, we report the structure of two new types of nanotubes from misfits, namely, the SnS/SnS2 and PbS/NbS2 series. To decipher the complex structures of these nanotubes, we use a range of methods: high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED) analyses, scanning electron microscopy (SEM), and Cs-corrected scanning transmission electron microscopy (STEM) in the high-angle annular dark-field mode (HAADF). In both new types, the lattice mismatch between the two alternating sublayers dictates the relative layer-stacking order and leads to a variety of chiral tubular structures. In particular, the incommensuration (a type of misfit) of the SnS2/SnS system in both the (in plane) a and b directions leads to a variety of relative in-plane orientation and stacking orders along the common c-axis. Thus the SnS/SnS2 nanotubes form superstructures with the sequence O-T and O-T-T, and mixtures thereof. We also report nanotubes of the misfit layered compound (PbS)1.14NbS2, and of NbS2 intercalated with Pb atoms, with the chemical formula PbNbS2. Thus, the possibility to use two kinds of folding mechanisms jointly offers a new apparatus for the synthesis of unique 1-D nanostructures of great complexity and a potentially large diversity of physicochemical properties.

12.
Nano Lett ; 14(11): 6132-7, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25275220

RESUMEN

Owing to their mechanically tunable electronic properties, carbon nanotubes (CNTs) have been widely studied as potential components for nanoelectromechanical systems (NEMS); however, the mechanical properties of multiwall CNTs are often limited by the weak shear interactions between the graphitic layers. Boron nitride nanotubes (BNNTs) exhibit a strong interlayer mechanical coupling, but their high electrical resistance limits their use as electromechanical transducers. Can the outstanding mechanical properties of BNNTs be combined with the electromechanical properties of CNTs in one hybrid structure? Here, we report the first experimental study of boron carbonitride nanotube (BCNNT) mechanics and electromechanics. We found that the hybrid BCNNTs are up to five times torsionally stiffer and stronger than CNTs, thereby retaining to a large extent the ultrahigh torsional stiffness of BNNTs. At the same time, we show that the electrical response of BCNNTs to torsion is 1 to 2 orders of magnitude higher than that of CNTs. These results demonstrate that BCNNTs could be especially attractive building blocks for NEMS.

13.
Proc Natl Acad Sci U S A ; 108(50): 19901-6, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22084073

RESUMEN

Inorganic nanoparticles of layered [two-dimensional (2D)] compounds with hollow polyhedral structure, known as fullerene-like nanoparticles (IF), were found to have excellent lubricating properties. This behavior can be explained by superposition of three main mechanisms: rolling, sliding, and exfoliation-material transfer (third body). In order to elucidate the tribological mechanism of individual nanoparticles in different regimes, in situ axial nanocompression and shearing forces were applied to individual nanoparticles using a high resolution scanning electron microscope. Gold nanoparticles deposited onto the IF nanoparticles surface served as markers, delineating the motion of individual IF nanoparticle. It can be concluded from these experiments that rolling is an important lubrication mechanism for IF-WS(2) in the relatively low range of normal stress (0.96 ± 0.38 GPa). Sliding is shown to be relevant under slightly higher normal stress, where the spacing between the two mating surfaces does not permit free rolling of the nanoparticles. Exfoliation of the IF nanoparticles becomes the dominant mechanism at the high end of normal stress; above 1.2 GPa and (slow) shear; i.e., boundary lubrication conditions. It is argued that the modus operandi of the nanoparticles depends on their degree of crystallinity (defects); sizes; shape, and their mechanical characteristics. This study suggests that the rolling mechanism, which leads to low friction and wear, could be attained by improving the sphericity of the IF nanoparticle, the dispersion (deagglomeration) of the nanoparticles, and the smoothness of the mating surfaces.

14.
Nano Lett ; 13(11): 5190-6, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24093328

RESUMEN

Molecular beam epitaxy growth of merging InAs nanowire intersections, that is, a first step toward the realization of a network of such nanowires, is reported. While InAs nanowires play already a leading role in the search for Majorana fermions, a network of these nanowires is expected to promote their exchange and allow for further development of this field. The structural properties of merged InAs nanowire intersections have been investigated using scanning and transmission electron microscope imaging. At the heart of the intersection, a sharp change of the crystal structure from wurtzite to perfect zinc blende is observed. The performed low-temperature conductance measurements demonstrate that the intersection does not impose an obstacle to current transport.

15.
Angew Chem Int Ed Engl ; 53(27): 6920-4, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24898937

RESUMEN

The synthesis of nanotubes from layered compounds has generated substantial scientific interest. "Misfit" layered compounds (MLCs) of the general formula [(MX)(1+x)](m)[TX2]n, where M can include Pb, Sb, rare earths; T=Cr, Nb, and X=S, Se can form layered structures, even though each sub-system alone is not necessarily a layered or a stable compound. A simple chemical method is used to synthesize these complex nanotubes from lanthanide-based misfit compounds. Quaternary nanotubular structures formed by partial substitution of the lanthanide atom in nanotubes by other elements are also confirmed. The driving force and mechanism of formation of these nanotubes is investigated by systematic temperature and time-dependent studies. A stress-inducement mechanism is proposed to explain the formation of the nanotubes. The resulting materials may find applications in fields that include thermoelectrics, light emitters, and catalysis and address fundamental physical issues in low dimensions.

16.
Nano Lett ; 12(6): 2948-52, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22533783

RESUMEN

Photon antibunching is ubiquitously observed in light emitted from quantum systems but is usually associated only with the lowest excited state of the emitter. Here, we devise a fluorophore that upon photoexcitation emits in either one of two distinct colors but exhibits strong antibunching between the two. This work demonstrates the possibility of creating room-temperature quantum emitters with higher complexity than effective two level systems via colloidal synthesis.


Asunto(s)
Coloides/química , Cristalización/métodos , Iluminación/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Semiconductores , Color , Ensayo de Materiales , Tamaño de la Partícula
17.
Nano Lett ; 12(12): 6347-52, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23130892

RESUMEN

We report the experimental and theoretical study of boron nitride nanotube (BNNT) torsional mechanics. We show that BNNTs exhibit a much stronger mechanical interlayer coupling than carbon nanotubes (CNTs). This feature makes BNNTs up to 1 order of magnitude stiffer and stronger than CNTs. We attribute this interlayer locking to the faceted nature of BNNTs, arising from the polarity of the B-N bond. This property makes BNNTs superior candidates to replace CNTs in nanoelectromechanical systems (NEMS), fibers, and nanocomposites.


Asunto(s)
Compuestos de Boro/química , Nanotubos/química , Nanotubos/ultraestructura , Nanotubos de Carbono/química , Resistencia al Corte , Estrés Mecánico
18.
Angew Chem Int Ed Engl ; 52(43): 11298-302, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24038755

RESUMEN

A prize for the ribbons: High-quality crystalline semiconducting nanoribbons can be prepared by "unwrapping" core-shell nanowire precursors. For example, Ge nanowires were coated with a Si shell and the top surface was carved by etching whereas the sides were protected by a thin layer of photoresist material. Finally the Ge core was removed selectively by chemical means to give fully opened and flat nanoribbon structures.

19.
J Am Chem Soc ; 134(39): 16379-86, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-22966874

RESUMEN

A new procedure for the synthesis of MoS(2) nanotubes is reported, and additionally demonstrated for MoSe(2), WS(2), and WSe(2). Highly concentrated sunlight creates continuous high temperatures, strong temperature gradients, and extended hot annealing regions, which, together with a metallic (Pb) catalyst, are conducive to the formation of different inorganic nanotubes. Structural characterization (including atomic resolution images) reveals a three-step reaction mechanism. In the first step, MoS(2) platelets react with water-air residues, decompose by intense solar irradiation, and are converted to molybdenum oxide. Subsequently, the hot annealing environment leads to the growth of Pb-stabilized MoO(3-x) nanowhiskers. Shortly afterward, the surface of the MoO(3-x) starts to react with the sulfur vapor supplied by the decomposition of nearby MoS(2) platelets and becomes enveloped by MoS(2) layers. Finally, the molybdenum oxide core is gradually transformed into MoS(2) nanotubes. These findings augur well for similar syntheses of as yet unattained nanotubes from other metal chalcogenides.

20.
Small ; 8(5): 654-60, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22392681

RESUMEN

Well-defined metallic nanobowls can be prepared by extending the concept of a protecting group to colloidal synthesis. Magnetic nanoparticles are employed as "protecting groups" during the galvanic replacement of silver with gold. The replacement reaction is accompanied by spontantous dissociation of the protecting groups, leaving behind metallic nanobowls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA