Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Liposome Res ; : 1-12, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379249

RESUMEN

The intricate cooperation between cancer cells and nontumor stromal cells within melanoma microenvironment (MME) enables tumor progression and metastasis. We previously demonstrated that the interplay between tumor-associated macrophages (TAMs) and melanoma cells can be disrupted by using long-circulating liposomes (LCLs) encapsulating prednisolone phosphate (PLP) (LCL-PLP) that inhibited tumor angiogenesis coordinated by TAMs. In this study, our goal was to improve LCL specificity for protumor macrophages (M2-like (i.e., TAMs) macrophages) and to induce a more precise accumulation at tumor site by loading PLP into IL-13-conjugated liposomes (IL-13-LCL-PLP), since IL-13 receptor is overexpressed in this type of macrophages. The IL-13-LCL-PLP liposomal formulation was obtained by covalent attachment of thiolated IL-13 to maleimide-functionalized LCL-PLP. C57BL/6 mice bearing B16.F10 s.c melanoma tumors were used to investigate the antitumor action of LCL-PLP and IL-13-LCL-PLP. Our results showed that IL-13-LCL-PLP formulation remained stable in biological fluids after 24h and it was preferentially taken up by M2 polarized macrophages. IL-13-LCL-PLP induced strong tumor growth inhibition compared to nonfunctionalized LCL-PLP at the same dose, by altering TAMs-mediated angiogenesis and oxidative stress, limiting resistance to apoptosis and invasive features in MME. These findings suggest IL-13-LCL-PLP might become a promising delivery platform for chemotherapeutic agents in melanoma.

2.
J Liposome Res ; : 1-14, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37998080

RESUMEN

The development of an inhalation powder (IP) for cancer therapy is desired to improve the therapeutic response and patient compliance. The latest studies highlighted that statins, a class of drugs used in hypercholesterolemia, can have anticancer and antiinflammatory properties. Therefore, the aim of the study was to develop an IP containing liposomes loaded with simvastatin using spray drying technology, as well as to investigate the influence of formulation factors on the quality attributes of the IP by means of experimental design. Results highlighted that the composition of liposomes, namely type of phospholipid and cholesterol concentration, highly influences the quality attributes of IP, and the use of optimal concentrations of excipients, i.e. D-mannitol and L-leucine, is essential to preserve the characteristics of liposomes throughout the spray drying process. The in vitro characterization of the optimal IP formulation revealed that the total percentage of released drug is higher from the IP formulation compared to the powder of active substance (53.38 vs. 42.76%) over a period of six hours, and 39.67% of dry particles have a size less than 5 µm, making them suitable for inhalation. As a conclusion, spray drying technology can be effectively used in the development and preparation of IP containing liposomes.

3.
Molecules ; 27(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36080447

RESUMEN

Curcumin's role in the treatment of ulcerative colitis (UC) has been proven by numerous studies, but its preventive administration, with the aim of reducing the remission episodes that are characteristic of this disease, must be further investigated. This study investigates the effects of a novel curcumin-loaded polymeric microparticulate oral-drug-delivery system for colon targeting (Col-CUR-MPs) in an experimental model of UC. Male Wistar rats (n = 40) were divided into five groups (n = 8), which were treated daily by oral gavage for seven days with a 2% aqueous solution of carboxymethylcellulose sodium salt (CMCNa) (healthy and disease control), free curcumin powder (reference), Col-CUR-MPs (test) and prednisolone (reference) prior to UC induction by the intrarectal administration of acetic acid (AA), followed by animal sacrification and blood and colonic samples' collection on the eighth day. Col-CUR-MPs exhibited an important preventive effect in the severity degree of oxidative stress that resulted following AA intrarectal administration, which was proved by the highest catalase (CAT) and total antioxidant capacity (TAC) levels and the lowest nitrites/nitrates (NOx), total oxidative status (TOS) and oxidative stress index (OSI) levels. Biochemical parameter analysis was supported by histopathological assessment, confirming the significant anti-inflammatory and antioxidant effects of this novel colon-specific delivery system in AA-induced rat models of UC. Thus, this study offers encouraging perspectives regarding the preventive administration of curcumin in the form of a drug delivery system for colon targeting.


Asunto(s)
Colitis Ulcerosa , Curcumina , Ácido Acético/metabolismo , Animales , Antioxidantes/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon/metabolismo , Masculino , Microesferas , Estrés Oxidativo , Ratas , Ratas Wistar
4.
J Liposome Res ; 31(1): 1-10, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31631726

RESUMEN

The goal of the current study was to investigate the pharmacokinetic profile, tissue distribution and adverse effects of long-circulating liposomes (LCL) with curcumin (CURC) and doxorubicin (DOX), in order to provide further evidence for previously demonstrated enhanced antitumor efficacy in colon cancer models. The pharmacokinetic studies were carried out in healthy rats, following the i.v. injection of a single dose of LCL-CURC-DOX (1 mg/kg DOX). For the tissue distribution study, DOX concentration in tumours, heart and liver were measured after the administration of two i.v. doses of LCL-CURC-DOX (2.5 mg/kg DOX and 5 mg/kg CURC) to Balb/c mice bearing C26 colon tumours. Markers of murine cardiac and hepatic oxidative status were determined to provide additional insights into the benefit of co-encapsulating CURC and DOX in LCL over DOX-induced adverse effects in these organs. The current study demonstrated that the liposomal association of CURC and DOX effectively improved the pharmacokinetics and biodistribution of DOX, limiting its side effects, via CURC-dependent antioxidant effects.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/farmacocinética , Carcinoma/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Curcumina/química , Doxorrubicina/efectos adversos , Doxorrubicina/farmacocinética , Animales , Antibióticos Antineoplásicos/química , Cápsulas , Doxorrubicina/química , Liposomas/química , Masculino , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Tamaño de la Partícula , Ratas
5.
Molecules ; 26(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672675

RESUMEN

(1) Background: Portable NIR spectrometers gain more and more ground in the field of Process Analytical Technology due to the easy on-site flexibility and interfacing versatility. These advantages that originate from the instrument miniaturization, also come with a downside with respect to performance compared to benchtop devices. The objective of this work was to evaluate the performance of MicroNIR in a pharmaceutical powder blend application, having three active ingredients and 5 excipients. (2) Methods: Spectral data was recorded in reflectance mode using static and dynamic acquisition, on calibration set samples developed using an experimental design. (3) Results: The developed method accurately predicted the content uniformity of these complex mixtures, moreover it was validated in the entire calibration range using ±10% acceptance limits. With respect to at-line prediction, the method presented lower performance compared to a previously studied benchtop spectrometer. Regarding the in-line monitoring of the blending process, it was shown that the spectral variability-induced by dynamic acquisition could be efficiently managed using spectral pre-processing. (4) Conclusions: The in-line process monitoring resulted in accurate concentration profiles, highlighting differences in the mixing behaviour of the investigated ingredients. For the low dose component homogeneity was not reached due to an inefficient dispersive mixing.


Asunto(s)
Química Farmacéutica , Composición de Medicamentos , Tecnología Farmacéutica , Calibración , Polvos , Espectroscopía Infrarroja Corta
6.
Cancer Sci ; 111(4): 1344-1356, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31960547

RESUMEN

5-Fluorouracil-based therapy remains the main approach in colorectal cancer, even though there are still some drawbacks, such as chemoresistance. In this study we combined 5-fluorouracil encapsulated in long-circulating liposomes with simvastatin, also encapsulated in long-circulating liposomes, that was previously proved to exert antitumor actions on the same tumor model. The production of angiogenic/inflammatory proteins was assessed by protein array and the production of markers for tumor aggressiveness (Bcl-2, Bax, and nuclear factor [NF]-κB) were determined by western blot analysis. Intratumor oxidative stress was evaluated through measurement of malondialdehyde level by HPLC, and through spectrophotometric analysis of catalytic activity of catalase and of total antioxidant capacity. Immunohistochemical analysis of tumors for CD31 expression was assessed. Intratumor activity of MMP-2 by gelatin zymography was also carried out. Our results revealed that combined therapies based on liposomal formulations exerted enhanced antitumor activities compared with combined treatment with free drugs. Sequential treatment with liposomal simvastatin and liposomal 5-fluorouracil showed the strongest antitumor activity in C26 colon carcinoma in vivo, mainly through inhibition of tumor angiogenesis. Important markers for cancer progression (Bcl-2, Bax, NF-κB, and intratumor antioxidants) showed that liposomal simvastatin might sensitize C26 cells to liposomal 5-fluorouracil treatment in both regimens tested. The outcome of simultaneous treatment with liposomal formulations was superior to sequential treatment with both liposomal types as the invasive capacity of C26 tumors was strongly increased after the latest treatment. The antitumor efficacy of combined therapy in C26 colon carcinoma might be linked to the restorative effects on proteins balance involved in tumor angiogenesis.


Asunto(s)
Carcinoma/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Simvastatina/farmacología , Animales , Apoptosis/efectos de los fármacos , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Liposomas/farmacología , Ratones , FN-kappa B/genética , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/genética
7.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340166

RESUMEN

Regardless of recent progress, melanoma is very difficult to treat, mainly due to the drug resistance modulated by tumor cells as well as by the tumor microenvironment (TME). Among the immune cells recruited at the tumor site, tumor associated macrophages (TAMs) are the most abundant, promoting important tumorigenic processes: angiogenesis, inflammation and invasiveness. Furthermore, it has been shown that TAMs are involved in mediating the drug resistance of melanoma cells. Thus, in the present study, we used liposomal formulation of prednisolone disodium phosphate (LCL-PLP) to inhibit the protumor function of TAMs with the aim to sensitize the melanoma cells to the cytotoxic drug doxorubicin (DOX) to which human melanoma has intrinsic resistance. Consequently, we evaluated the in vivo effects of the concomitant administration of LCL-PLP and liposomal formulation of DOX (LCL-DOX) on B16.F10 melanoma growth and on the production of key molecular markers for tumor development. Our results demonstrated that the concomitant administration of LCL-PLP and LCL-DOX induced a strong inhibition of tumor growth, primarily by inhibiting TAMs-mediated angiogenesis as well as the tumor production of MMP-2 and AP-1. Moreover, our data suggested that the combined therapy also affected TME as the number of infiltrated macrophages in melanoma microenvironment was reduced significantly.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Liposomas , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Neovascularización Patológica/metabolismo , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos/administración & dosificación , Biomarcadores , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Melanoma Experimental/tratamiento farmacológico , Ratones , Neovascularización Patológica/tratamiento farmacológico , Estrés Oxidativo , Prednisolona/administración & dosificación , Prednisolona/análogos & derivados
8.
Med Sci Monit ; 25: 5087-5097, 2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31287810

RESUMEN

BACKGROUND Curcumin is an antioxidant that reduces inflammation and pain. This study aimed to assess the effect of pretreatment with naproxen and liposomal curcumin compared with naproxen and curcumin solution on oxidative stress parameters and pain in a rat model of migraine. MATERIAL AND METHODS Sixty-three male Wistar rats included a control group (n=9) and a rat model of migraine (n=54) induced by intraperitoneal injection of nitroglycerin (1 mg/0.1 kg). The rat model group was divided into an untreated control group (n=9), a group pretreated with naproxen alone (2.8 mg/kg) (n=9), a group pretreated with naproxen (2.8 mg/kg) combined with curcumin solution (1 mg/0.1 kg) (n=9), a group pretreated with naproxen (2.8 mg/kg) combined with curcumin solution (2 mg/0.1 kg) (n=9), a group pretreated with naproxen (2.8 mg/kg) combined with liposomal curcumin solution (1 mg/0.1 kg) (n=9) a group pretreated with naproxen (2.8 mg/kg) combined with liposomal curcumin solution (2 mg/0.1 kg) (n=9). Spectroscopy measured biomarkers of total oxidative status and nociception was tested using an injection of 1% of formalin into the rat paw. RESULTS Expression of biomarkers of oxidative stress and enhanced nociception were significantly increased following pretreatment with combined naproxen and liposomal curcumin compared with curcumin solution or naproxen alone (P<0.001). Combined curcumin solution and naproxen were more effective at a concentration of 2 mg/0.1kg for the first nociceptive phase (P<0.005). CONCLUSIONS In a rat model of migraine, combined therapy with liposomal curcumin and naproxen showed an improved antioxidant effect and anti-nociceptive effect.


Asunto(s)
Curcumina/farmacología , Trastornos Migrañosos/tratamiento farmacológico , Naproxeno/farmacología , Animales , Antioxidantes/farmacología , Curcumina/metabolismo , Modelos Animales de Enfermedad , Quimioterapia Combinada/métodos , Inflamación/tratamiento farmacológico , Masculino , Trastornos Migrañosos/metabolismo , Naproxeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Dolor/tratamiento farmacológico , Dimensión del Dolor/métodos , Ratas , Ratas Wistar
9.
Molecules ; 24(5)2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30818888

RESUMEN

Curcumin (CC) is known to have anti-inflammatory and anti-oxidative properties and has already been tested for its efficiency in different diseases including diabetes mellitus (DM). New formulations and route administration were designed to obtain products with higher bioavailability. Our study aimed to test the effect of intraperitoneal (i.p.) administration of liposomal curcumin (lCC) as pre-treatment in streptozotocin(STZ)-induced DM in rats on oxidative stress, liver, and pancreatic functional parameters. Forty-two Wistar-Bratislava rats were randomly divided into six groups (seven animals/group): control (no diabetes), control-STZ (STZ-induced DM -60 mg/100g body weight a single dose intraperitoneal administration, and no CC pre-treatment), two groups with DM and CC pre-treatment (1mg/100g bw-STZ + CC1, 2 mg/100g bw-STZ + CC2), and two groups with DM and lCC pre-treatment (1 mg/100g bw-STZ + lCC1, 2 mg/100g bw-STZ + lCC1). Intraperitoneal administration of Curcumin in diabetic rats showed a significant reduction of nitric oxide, malondialdehyde, total oxidative stress, and catalase for both evaluated formulations (CC and lCC) compared to control group (p < 0.005), with higher efficacy of lCC formulation compared to CC solution (p < 0.002, excepting catalase for STZ + CC2vs. STZ + lCC1when p = 0.0845). The CC and lCC showed hepatoprotective and hypoglycemic effects, a decrease in oxidative stress and improvement in anti-oxidative capacity status against STZ-induced DM in rats (p < 0.002). The lCC also proved better efficacy on MMP-2, and -9 plasma levels as compared to CC (p < 0.003, excepting STZ + CC2 vs. STZ + lCC1 comparison with p = 0.0553). The lCC demonstrated significantly better efficacy as compared to curcumin solution on all serum levels of the investigated markers, sustaining its possible use as adjuvant therapy in DM.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Curcumina/farmacología , Complicaciones de la Diabetes/prevención & control , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Liposomas/administración & dosificación , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Curcumina/administración & dosificación , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Hipoglucemiantes/administración & dosificación , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Estrés Oxidativo , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Ratas , Ratas Wistar
10.
J Liposome Res ; 28(1): 49-61, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27788618

RESUMEN

Quality by design principles (QbD) were used to assist the formulation of prednisolone-loaded long-circulating liposomes (LCL-PLP) in order to gain a more comprehensive understanding of the preparation process. This approach enables us to improve the final product quality in terms of liposomal drug concentration, encapsulation efficiency and size, and to minimize preparation variability. A 19-run D-optimal experimental design was used to study the impact of the highest risk factors on PLP liposomal concentration (Y1- µg/ml), encapsulation efficiency (Y2-%) and size (Y3-nm). Out of six investigated factors, four of them were identified as critical parameters affecting the studied responses. PLP molar concentration and the molar ratio of DPPC to MPEG-2000-DSPE had a positive impact on both Y1 and Y2, while the rotation speed at the formation of the lipid film had a negative impact. Y3 was highly influenced by prednisolone molar concentration and extrusion temperature. The accuracy and robustness of the model was further on confirmed. The developed model was used to optimize the formulation of LCL-PLP for efficient accumulation of the drug to tumor tissue. The cytotoxicity of the optimized LCL-PLP on C26 murine colon carcinoma cells was assessed. LCL-PLP exerted significant anti-angiogenic and anti-inflammatory effects on M2 macrophages, affecting indirectly the C26 colon carcinoma cell proliferation and development.


Asunto(s)
Liposomas/química , Prednisolona/química , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Línea Celular , Proliferación Celular , Supervivencia Celular , Preparaciones de Acción Retardada , Liberación de Fármacos , Humanos , Lípidos/química , Ratones , Tamaño de la Partícula , Polietilenglicoles/química , Prednisolona/farmacología , Propiedades de Superficie
11.
Drug Dev Ind Pharm ; 44(3): 385-397, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29098869

RESUMEN

This study highlights the advantages of using a Quality by Design (QbD) approach in order to gain a more comprehensive understanding of the freeze-drying process of pravastatin-loaded long-circulating liposomes (LCL-PRAV). Within the QbD paradigm, the present study aimed to establish the design space for the optimization of freeze-dried LCL-PRAV by means of Design of Experiment (DOE). The encapsulated solute retention (ESR), the average particle size, and zeta potential after freeze-drying, the residual moisture content, the macroscopic cake appearance, the glass transition temperature (Tg) of the freeze-dried cake, and the primary drying time were defined as critical quality attributes (CQAs) for the freeze-dried final product. Further on, the influence of lyoprotectant type, freezing rate, shelf temperature during primary drying, and the presence of an annealing step on the CQAs was investigated through a 21-run D-optimal experimental design. Three-dimensional response surfaces were generated to complete the statistical analysis and for a better understanding of the influence of variables and their interactions on the responses. The developed model was then used to build the design space for the freeze-dried liposomes, within which the product quality was assured and the process variability was minimized.


Asunto(s)
Liposomas/química , Química Farmacéutica/métodos , Desecación/métodos , Liofilización/métodos , Congelación , Tamaño de la Partícula , Pravastatina/química , Soluciones/química , Temperatura de Transición
12.
Saudi Pharm J ; 25(7): 981-992, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29158704

RESUMEN

Lyophilization is used to ensure an increased shelf-life of liposomes, by preserving them in dry state, more stable than the aqueous dispersions. When stored as aqueous systems, the encapsulated drugs are released and the liposomes might aggregate or fuse. The aim of this study was to develop and optimize a lyophilized formulation of simvastatin (SIM) loaded into long circulating liposomes using the Quality by Design (QbD) approach. Pharmaceutical development by QbD aims to identify characteristics that are critical for the final product quality, and to establish how the critical process parameters can be varied to consistently produce a product with the desired characteristics. In the case of lyophilized liposomes, the choice of the optimum formulation and technological parameters has to be done, in order to protect the integrity of the liposomal membrane during lyophilization. Thus, the influence of several risk factors (3 formulation factors: PEG proportion, cholesterol concentration, the cryoprotectant to phospholipids molar ratio, and 2 process parameters: the number of extrusions through 100 nm polycarbonate membranes and the freezing conditions prior lyophilization) over the critical quality attributes (CQAs) of lyophilized long circulating liposomes with simvastatin (lyo-LCL-SIM), i.e. the size, the encapsulated SIM concentration, the encapsulated SIM retention, the Tm change and the residual moisture content, was investigated within the current study using the design of experiments tool of QbD. Moreover, the design space for lyo-LCL-SIM was determined, in which the established quality requirements of the product are met, provided that the risk factors vary within the established limits.

13.
J Liposome Res ; 25(4): 261-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25487170

RESUMEN

Simvastatin (SIM) is a lipophilic statin that has potential benefits for prevention and treatment of several types of malignancies. However, its low water solubility and the toxicity associated with administration of high doses recommend it for encapsulation in carriers able to deliver the therapeutic dose in the tumor. In this work, liposomes with long-circulating properties were proposed as delivery systems for SIM. The objective of this study was to optimize the formulation of SIM-loaded long-circulating liposomes (LCL-SIM) by using D-optimal experimental design. The influence of phospholipids concentration, phospholipids to cholesterol molar ratio and SIM concentration was studied on SIM liposomal concentration, encapsulation efficiency and liposomal size. The optimized formulation had liposomal SIM concentration 6238 µg/ml, EE % of 83.4% and vesicle size of 190.5 nm. Additionally we evaluated the in vitro cytotoxicity of the optimized liposomal SIM (LCL-SIM-OPT) on C26 murine colon carcinoma cells cultivated in monoculture as well as in co-culture with murine peritoneal macrophages at a cell density ratio that provides an approximation of physiological conditions of colon carcinoma development in vivo. Our preliminary studies suggested that LCL-SIM-OPT exerted cytotoxicity on C26 cells probably via enhancement of oxidative stress in co-culture environment.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Simvastatina/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Liposomas , Ratones , Tamaño de la Partícula , Simvastatina/química , Simvastatina/farmacología , Relación Estructura-Actividad , Propiedades de Superficie , Células Tumorales Cultivadas
14.
Carbohydr Polym ; 339: 122251, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823918

RESUMEN

In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.


Asunto(s)
Materiales Biocompatibles , Condrocitos , Disulfuros , Ácido Hialurónico , Hidrogeles , Reología , Ingeniería de Tejidos , Ácido Hialurónico/química , Hidrogeles/química , Hidrogeles/síntesis química , Disulfuros/química , Condrocitos/efectos de los fármacos , Condrocitos/citología , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno
15.
Pharmaceutics ; 16(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931911

RESUMEN

Gastroretentive drug delivery systems (GRDDSs) have gained substantial attention in the last 20 years due to their ability to retain the drug in the stomach for an extended time, thus promoting an extended release and high bioavailability for a broad range of active pharmaceutical ingredients (APIs) that are pH-sensitive and/or have a narrow absorption window. The currently existing GRDDSs include floating, expanding, mucoadhesive, magnetic, raft-forming, ion-exchanging, and high-density systems. Although there are seven types of systems, the main focus is on floating, expanding, and mucoadhesive systems produced by various techniques, 3D printing being one of the most revolutionary and currently studied ones. This review assesses the newest production technologies and briefly describes the in vitro and in vivo evaluation methods, with the aim of providing a better overall understanding of GRDDSs as a novel emerging strategy for targeted drug delivery.

16.
Polymers (Basel) ; 16(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38399895

RESUMEN

Three-dimensional (3D) printing in the pharmaceutical field allows rapid manufacturing of a diverse range of pharmaceutical dosage forms, including personalized items. The application of this technology in dosage form manufacturing requires the judicious selection of excipients because the selected materials must be appropriate to the working principle of each technique. Most techniques rely on the use of polymers as the main material. Among the pharmaceutically approved polymers, polyvinyl alcohol (PVA) is one of the most used, especially for fused deposition modeling (FDM) technology. This review summarizes the physical and chemical properties of pharmaceutical-grade PVA and its applications in the manufacturing of dosage forms, with a particular focus on those fabricated through FDM. The work provides evidence on the diversity of dosage forms created using this polymer, highlighting how formulation and processing difficulties may be overcome to get the dosage forms with a suitable design and release profile.

17.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37765129

RESUMEN

Three-dimensional printing by fused deposition modeling (FDM) coupled with hot-melt extrusion (HME) is a point of convergence of research efforts directed toward the development of personalized dosage forms. In addition to the customization in terms of shapes, sizes, or delivered drug doses, the modulation of drug release profiles is crucial to ensure the superior efficacy and safety of modern 3D-printed medications compared to those of conventional ones. Our work aims to solidify the groundwork for the preparation of 3D-printed tablets that ensure the sustained release of diclofenac sodium. Specifically, we achieved the fast release of a diclofenac sodium dose to allow for the prompt onset of its pharmacological effect, further sustaining by the slow release of another dose to maintain the effect over a prolonged timeframe. In this regard, proper formulation and design strategies (a honeycomb structure for the immediate-release layer and a completely filled structure for the sustained-release layer) were applied. Secondarily, the potential of polyvinyl alcohol to function as a multifaceted polymeric matrix for both the immediate and slow-release layers was explored, with the objective of promoting the real-life applicability of the technique by downsizing the number of materials required to obtain versatile pharmaceutical products. The present study is a step forward in the translation of HME-FDM-3DP into a pharmaceutical manufacturing methodology.

18.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37630976

RESUMEN

The present study aimed to develop 3D printed dosage forms, using custom-made filaments loaded with diclofenac sodium (DS). The printed tablets were developed by implementing a quality by design (QbD) approach. Filaments with adequate FDM 3D printing characteristics were produced via hot melt extrusion (HME). Their formulation included DS as active substance, polyvinyl alcohol (PVA) as a polymer, different types of plasticisers (mannitol, erythritol, isomalt, maltodextrin and PEG) and superdisintegrants (crospovidone and croscarmellose sodium). The physicochemical and mechanical properties of the extruded filaments were investigated through differential scanning calorimetry (DSC), X-ray diffraction (XRD) and tensile measurements. In addition, cylindrical-shaped and tubular-shaped 3D dosage forms were printed, and their dissolution behaviour was assessed via various drug release kinetic models. DSC and XRD results demonstrated the amorphous dispersion of DS into the polymeric filaments. Moreover, the 3D printed tablets, regardless of their composition, exhibited a DS release of nearly 90% after 45 min at pH 6.8, while their release behaviour was effectively described by the Korsmeyer-Peppas model. Notably, the novel tube design, which was anticipated to increase the drug release rate, proved the opposite based on the in vitro dissolution study results. Additionally, the use of crospovidone increased DS release rate, whereas croscarmellose sodium decreased it.

19.
Pharmaceutics ; 14(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36015247

RESUMEN

The paediatric population has always suffered from a lack of medicines tailored to their needs, especially in terms of accurate dosage, stability and acceptability. Orodispersible dosage forms have gone through a resurrection as an alternative to liquid formulations or fractioned solid formulations, although they are still subject to several inconveniences, among which the unpleasant taste and the low oral bioavailability of the API are the most significant hurdles in the way of achieving an optimal drug product. Nanostructures can address these inconveniences through their size and variety, owing to the plethora of materials that can be used in their manufacturing. Through the formation and functionalisation of nanostructures, followed by their inclusion in orodispersible dosage forms, safe, stable and acceptable medicines intended for paediatric use can be developed.

20.
Pharmaceutics ; 14(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36015356

RESUMEN

Tissue regeneration is a prominent area of research, developing biomaterials aimed to be tunable, mechanistic scaffolds that mimic the physiological environment of the tissue. These biomaterials are projected to effectively possess similar chemical and biological properties, while at the same time are required to be safely and quickly degradable in the body once the desired restoration is achieved. Supramolecular systems composed of reversible, non-covalently connected, self-assembly units that respond to biological stimuli and signal cells have efficiently been developed as preferred biomaterials. Their biocompatibility and the ability to engineer the functionality have led to promising results in regenerative therapy. This review was intended to illuminate those who wish to envisage the niche translational research in regenerative therapy by summarizing the various explored types, chemistry, mechanisms, stimuli receptivity, and other advancements of supramolecular systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA