Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Cancer Res ; 24(4): 737-743, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28814435

RESUMEN

Glioblastoma (GBM) is a deadly disease with few effective therapies. Although much has been learned about the molecular characteristics of the disease, this knowledge has not been translated into clinical improvements for patients. At the same time, many new therapies are being developed. Many of these therapies have potential biomarkers to identify responders. The result is an enormous amount of testable clinical questions that must be answered efficiently. The GBM Adaptive Global Innovative Learning Environment (GBM AGILE) is a novel, multi-arm, platform trial designed to address these challenges. It is the result of the collective work of over 130 oncologists, statisticians, pathologists, neurosurgeons, imagers, and translational and basic scientists from around the world. GBM AGILE is composed of two stages. The first stage is a Bayesian adaptively randomized screening stage to identify effective therapies based on impact on overall survival compared with a common control. This stage also finds the population in which the therapy shows the most promise based on clinical indication and biomarker status. Highly effective therapies transition in an inferentially seamless manner in the identified population to a second confirmatory stage. The second stage uses fixed randomization to confirm the findings from the first stage to support registration. Therapeutic arms with biomarkers may be added to the trial over time, while others complete testing. The design of GBM AGILE enables rapid clinical testing of new therapies and biomarkers to speed highly effective therapies to clinical practice. Clin Cancer Res; 24(4); 737-43. ©2017 AACR.


Asunto(s)
Neoplasias Encefálicas/terapia , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Glioblastoma/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Teorema de Bayes , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Humanos , Proyectos de Investigación , Análisis de Supervivencia
2.
Oncoimmunology ; 5(6): e1145332, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27471611

RESUMEN

BACKGROUND: Emerging immunotherapeutic strategies for the treatment of glioblastoma (GBM) such as dendritic cell (DC) vaccines, heat shock proteins, peptide vaccines, and adoptive T-cell therapeutics, to name a few, have transitioned from the bench to clinical trials. With upcoming strategies and developing therapeutics, it is challenging to critically evaluate the practical, clinical potential of individual approaches and to advise patients on the most promising clinical trials. METHODS: The authors propose a system to prioritize such therapies in an organized and data-driven fashion. This schema is based on four categories of factors: antigenic target robustness, immune-activation and -effector responses, preclinical vetting, and early evidence of clinical response. Each of these categories is subdivided to focus on the most salient elements for developing a successful immunotherapeutic approach for GBM, and a numerical score is generated. RESULTS: The Score Card reveals therapeutics that have the most robust data to support their use, provides a reference prioritization score, and can be applied in a reiterative fashion with emerging data. CONCLUSIONS: The authors hope that this schema will give physicians an evidence-based and rational framework to make the best referral decisions to better guide and serve this patient population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA