Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(2): 1049-1058, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31896582

RESUMEN

Targeting Clostridium difficile infection is challenging because treatment options are limited, and high recurrence rates are common. One reason for this is that hypervirulent C. difficile strains often have a binary toxin termed the C. difficile toxin, in addition to the enterotoxins TsdA and TsdB. The C. difficile toxin has an enzymatic component, termed CDTa, and a pore-forming or delivery subunit termed CDTb. CDTb was characterized here using a combination of single-particle cryoelectron microscopy, X-ray crystallography, NMR, and other biophysical methods. In the absence of CDTa, 2 di-heptamer structures for activated CDTb (1.0 MDa) were solved at atomic resolution, including a symmetric (SymCDTb; 3.14 Å) and an asymmetric form (AsymCDTb; 2.84 Å). Roles played by 2 receptor-binding domains of activated CDTb were of particular interest since the receptor-binding domain 1 lacks sequence homology to any other known toxin, and the receptor-binding domain 2 is completely absent in other well-studied heptameric toxins (i.e., anthrax). For AsymCDTb, a Ca2+ binding site was discovered in the first receptor-binding domain that is important for its stability, and the second receptor-binding domain was found to be critical for host cell toxicity and the di-heptamer fold for both forms of activated CDTb. Together, these studies represent a starting point for developing structure-based drug-design strategies to target the most severe strains of C. difficile.


Asunto(s)
ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/química , Enterotoxinas/metabolismo , ADP Ribosa Transferasas/genética , Animales , Proteínas Bacterianas/genética , Sitios de Unión , Fenómenos Biofísicos , Chlorocebus aethiops , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dominios Proteicos , Células Vero
2.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805767

RESUMEN

Novel therapeutics are needed to treat pathologies associated with the Clostridioides difficile binary toxin (CDT), particularly when C. difficile infection (CDI) occurs in the elderly or in hospitalized patients having illnesses, in addition to CDI, such as cancer. While therapies are available to block toxicities associated with the large clostridial toxins (TcdA and TcdB) in this nosocomial disease, nothing is available yet to treat toxicities arising from strains of CDI having the binary toxin. Like other binary toxins, the active CDTa catalytic subunit of CDT is delivered into host cells together with an oligomeric assembly of CDTb subunits via host cell receptor-mediated endocytosis. Once CDT arrives in the host cell's cytoplasm, CDTa catalyzes the ADP-ribosylation of G-actin leading to degradation of the cytoskeleton and rapid cell death. Although a detailed molecular mechanism for CDT entry and host cell toxicity is not yet fully established, structural and functional resemblances to other binary toxins are described. Additionally, unique conformational assemblies of individual CDT components are highlighted herein to refine our mechanistic understanding of this deadly toxin as is needed to develop effective new therapeutic strategies for treating some of the most hypervirulent and lethal strains of CDT-containing strains of CDI.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/antagonistas & inhibidores , Clostridioides difficile/patogenicidad , Infección Hospitalaria/tratamiento farmacológico , Enterocolitis Seudomembranosa/tratamiento farmacológico , Enterotoxinas/antagonistas & inhibidores , ADP-Ribosilación/efectos de los fármacos , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/deficiencia , Actinas/genética , Antibacterianos/uso terapéutico , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sitios de Unión , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Infección Hospitalaria/metabolismo , Infección Hospitalaria/microbiología , Infección Hospitalaria/patología , Endocitosis/efectos de los fármacos , Enterocolitis Seudomembranosa/metabolismo , Enterocolitis Seudomembranosa/microbiología , Enterocolitis Seudomembranosa/patología , Enterotoxinas/química , Enterotoxinas/genética , Enterotoxinas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína
3.
J Am Chem Soc ; 141(47): 18851-18861, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31693361

RESUMEN

5-Methylcytosine (mC) is an epigenetic mark that is written by methyltransferases, erased through passive and active mechanisms, and impacts transcription, development, diseases including cancer, and aging. Active DNA demethylation involves TET-mediated stepwise oxidation of mC to 5-hydroxymethylcytosine, 5-formylcytosine (fC), or 5-carboxylcytosine (caC), excision of fC or caC by thymine DNA glycosylase (TDG), and subsequent base excision repair. Many elements of this essential process are poorly defined, including TDG excision of caC. To address this problem, we solved high-resolution structures of human TDG bound to DNA with cadC (5-carboxyl-2'-deoxycytidine) flipped into its active site. The structures unveil detailed enzyme-substrate interactions that mediate recognition and removal of caC, many involving water molecules. Importantly, two water molecules contact a carboxylate oxygen of caC and are poised to facilitate acid-catalyzed caC excision. Moreover, a substrate-dependent conformational change in TDG modulates the hydrogen bond interactions for one of these waters, enabling productive interaction with caC. An Asn residue (N191) that is critical for caC excision is found to contact N3 and N4 of caC, suggesting a mechanism for acid-catalyzed base excision that features an N3-protonated form of caC but would be ineffective for C, mC, or hmC. We also investigated another Asn residue (N140) that is catalytically essential and strictly conserved in the TDG-MUG enzyme family. A structure of N140A-TDG bound to cadC DNA provides the first high-resolution insight into how enzyme-substrate interactions, including water molecules, are impacted by depleting the conserved Asn, informing its role in binding and addition of the nucleophilic water molecule.


Asunto(s)
Citosina/análogos & derivados , Timina ADN Glicosilasa/metabolismo , Citosina/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Timina ADN Glicosilasa/química
4.
Biochem J ; 475(9): 1533-1551, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29626157

RESUMEN

Glycoside hydrolase family 30 subfamily 8 (GH30-8) ß-1,4-endoxylanases are known for their appendage-dependent function requiring recognition of an α-1,2-linked glucuronic acid (GlcA) common to glucuronoxylans for hydrolysis. Structural studies have indicated that the GlcA moiety of glucuronoxylans is coordinated through six hydrogen bonds and a salt bridge. These GlcA-dependent endoxylanases do not have significant activity on xylans that do not bear GlcA substitutions such as unsubstituted linear xylooligosaccharides or cereal bran arabinoxylans. In the present study, we present the structural and biochemical characteristics of xylanase 30A from Clostridium acetobutylicum (CaXyn30A) which was originally selected for study due to predicted structural differences within the GlcA coordination loops. Amino acid sequence comparisons indicated that this Gram-positive-derived GH30-8 more closely resembles Gram-negative derived forms of these endoxylanases: a hypothesis borne out in the developed crystallographic structure model of the CaXyn30A catalytic domain (CaXyn30A-CD). CaXyn30A-CD hydrolyzes xylans to linear and substituted oligoxylosides showing the greatest rate with the highly arabinofuranose (Araf)-substituted cereal arabinoxylans. CaXyn30A-CD hydrolyzes xylooligosaccharides larger than xylotriose and shows an increased relative rate of hydrolysis for xylooligosaccharides containing α-1,2-linked arabinofuranose substitutions. Biochemical analysis confirms that CaXyn30A benefits from five xylose-binding subsites which extend from the -3 subsite to the +2 subsite of the binding cleft. These studies indicate that CaXyn30A is a GlcA-independent endoxylanase that may have evolved for the preferential recognition of α-1,2-Araf substitutions on xylan chains.


Asunto(s)
Clostridium/enzimología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Glucuronatos/metabolismo , Modelos Moleculares , Oligosacáridos/metabolismo , Conformación Proteica , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Plásmidos , Homología de Secuencia , Especificidad por Sustrato
5.
Nucleic Acids Res ; 44(21): 10248-10258, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27580719

RESUMEN

Thymine DNA Glycosylase (TDG) is a base excision repair enzyme functioning in DNA repair and epigenetic regulation. TDG removes thymine from mutagenic G·T mispairs arising from deamination of 5-methylcytosine (mC), and it processes other deamination-derived lesions including uracil (U). Essential for DNA demethylation, TDG excises 5-formylcytosine and 5-carboxylcytosine, derivatives of mC generated by Tet (ten-eleven translocation) enzymes. Here, we report structural and functional studies of TDG82-308, a new construct containing 29 more N-terminal residues than TDG111-308, the construct used for previous structures of DNA-bound TDG. Crystal structures and NMR experiments demonstrate that most of these N-terminal residues are disordered, for substrate- or product-bound TDG82-308 Nevertheless, G·T substrate affinity and glycosylase activity of TDG82-308 greatly exceeds that of TDG111-308 and is equivalent to full-length TDG. We report the first high-resolution structures of TDG in an enzyme-substrate complex, for G·U bound to TDG82-308 (1.54 Å) and TDG111-308 (1.71 Å), revealing new enzyme-substrate contacts, direct and water-mediated. We also report a structure of the TDG82-308 product complex (1.70 Å). TDG82-308 forms unique enzyme-DNA interactions, supporting its value for structure-function studies. The results advance understanding of how TDG recognizes and removes modified bases from DNA, particularly those resulting from deamination.


Asunto(s)
Daño del ADN , ADN/química , ADN/metabolismo , Timina ADN Glicosilasa/química , Timina ADN Glicosilasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , ADN/genética , Activación Enzimática , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes , Relación Estructura-Actividad , Especificidad por Sustrato
6.
Biochemistry ; 56(2): 391-402, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27989121

RESUMEN

Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15-0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor-acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [⟨dO-O⟩ = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O-O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid-carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.


Asunto(s)
Ácido Aspártico/química , Ácidos Carboxílicos/química , Proteínas de Escherichia coli/química , Ácido Glutámico/química , Proteína Desglicasa DJ-1/química , Procesamiento Proteico-Postraduccional , Protones , Proteínas Ribosómicas/química , Ácido Aspártico/metabolismo , Ácidos Carboxílicos/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Ácido Glutámico/metabolismo , Humanos , Enlace de Hidrógeno , Hidroxilación , Modelos Moleculares , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
7.
Nucleic Acids Res ; 43(19): 9541-52, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26358812

RESUMEN

Thymine DNA Glycosylase (TDG) performs essential functions in maintaining genetic integrity and epigenetic regulation. Initiating base excision repair, TDG removes thymine from mutagenic G ·: T mispairs caused by 5-methylcytosine (mC) deamination and other lesions including uracil (U) and 5-hydroxymethyluracil (hmU). In DNA demethylation, TDG excises 5-formylcytosine (fC) and 5-carboxylcytosine (caC), which are generated from mC by Tet (ten-eleven translocation) enzymes. Using improved crystallization conditions, we solved high-resolution (up to 1.45 Å) structures of TDG enzyme-product complexes generated from substrates including G·U, G·T, G·hmU, G·fC and G·caC. The structures reveal many new features, including key water-mediated enzyme-substrate interactions. Together with nuclear magnetic resonance experiments, the structures demonstrate that TDG releases the excised base from its tight product complex with abasic DNA, contrary to previous reports. Moreover, DNA-free TDG exhibits no significant binding to free nucleobases (U, T, hmU), indicating a Kd >> 10 mM. The structures reveal a solvent-filled channel to the active site, which might facilitate dissociation of the excised base and enable caC excision, which involves solvent-mediated acid catalysis. Dissociation of the excised base allows TDG to bind the beta rather than the alpha anomer of the abasic sugar, which might stabilize the enzyme-product complex.


Asunto(s)
Disparidad de Par Base , ADN/química , Timina ADN Glicosilasa/química , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Pentoxil (Uracilo)/análogos & derivados , Pentoxil (Uracilo)/química , Pentoxil (Uracilo)/metabolismo , Unión Proteica , Timina/metabolismo , Timina ADN Glicosilasa/metabolismo , Uracilo/metabolismo
8.
Biochemistry ; 55(45): 6205-6208, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27805810

RESUMEN

Thymine DNA glycosylase (TDG) is a base excision repair enzyme with key functions in epigenetic regulation. Performing a critical step in a pathway for active DNA demethylation, TDG removes 5-formylcytosine and 5-carboxylcytosine, oxidized derivatives of 5-methylcytosine that are generated by TET (ten-eleven translocation) enzymes. We determined a crystal structure of TDG bound to DNA with a noncleavable (2'-fluoroarabino) analogue of 5-formyldeoxycytidine flipped into its active site, revealing how it recognizes and hydrolytically excises fC. Together with previous structural and biochemical findings, the results illustrate how TDG employs an adaptable active site to excise a broad variety of nucleobases from DNA.


Asunto(s)
Citosina/análogos & derivados , ADN/metabolismo , Timina ADN Glicosilasa/metabolismo , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Citosina/química , Citosina/metabolismo , ADN/química , ADN/genética , Metilación de ADN , Reparación del ADN , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Oxidación-Reducción , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato , Timina ADN Glicosilasa/química
9.
BMC Struct Biol ; 16: 1, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26822308

RESUMEN

BACKGROUND: Multimeric naphthoquinones are redox-active compounds that exhibit antineoplastic, antiprotozoal, and antiviral activities. Due to their multimodal effect on perturbation of cellular oxidative state, these compounds hold great potential as therapeutic agents against highly proliferative neoplastic cells. In our previous work, we developed a series of novel dimeric naphthoquinones and showed that they were selectively cytotoxic to human acute myeloid leukemia (AML), breast and prostate cancer cell lines. We subsequently identified the oxidoreductase NAD(P)H dehydrogenase, quinone 1 (NQO1) as the major target of dimeric naphthoquinones and proposed a mechanism of action that entailed induction of a futile redox cycling. RESULTS: Here, for the first time, we describe a direct physical interaction between the bromohydroxy dimeric naphthoquinone E6a and NQO1. Moreover, our studies reveal an extensive binding interface between E6a and the isoalloxazine ring of the flavin adenine dinucleotide (FAD) cofactor of NQO1 in addition to interactions with protein side chains in the active site. We also present biochemical evidence that dimeric naphthoquinones affect the redox state of the FAD cofactor of NQO1. Comparison of the mode of binding of E6a with those of other chemotherapeutics reveals unique characteristics of the interaction that can be leveraged in future drug optimization efforts. CONCLUSION: The first structure of a dimeric naphthoquinone-NQO1 complex was reported, which can be used for design and synthesis of more potent next generation dimeric naphthoquinones to target NQO1 with higher affinity and specificity.


Asunto(s)
Antineoplásicos/farmacología , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Naftoquinonas/farmacología , Antineoplásicos/química , Cristalografía por Rayos X , NAD(P)H Deshidrogenasa (Quinona)/química , Naftoquinonas/química , Oxidación-Reducción , Unión Proteica , Conformación Proteica
10.
Biochem J ; 467(3): 425-38, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25695333

RESUMEN

Constitutive activation of the extracellular-signal-regulated kinases 1 and 2 (ERK1/2) are central to regulating the proliferation and survival of many cancer cells. The current inhibitors of ERK1/2 target ATP binding or the catalytic site and are therefore limited in their utility for elucidating the complex biological roles of ERK1/2 through its phosphorylation and regulation of over 100 substrate proteins. To overcome this limitation, a combination of computational and experimental methods was used to identify low-molecular-mass inhibitors that are intended to target ERK1/2 substrate-docking domains and selectively interfere with ERK1/2 regulation of substrate proteins. In the present study, we report the identification and characterization of compounds with a thienyl benzenesulfonate scaffold that were designed to inhibit ERK1/2 substrates containing an F-site or DEF (docking site for ERK, FXF) motif. Experimental evidence shows the compounds inhibit the expression of F-site containing immediate early genes (IEGs) of the Fos family, including c-Fos and Fra1, and transcriptional regulation of the activator protein-1 (AP-1) complex. Moreover, this class of compounds selectively induces apoptosis in melanoma cells containing mutated BRaf and constitutively active ERK1/2 signalling, including melanoma cells that are inherently resistant to clinically relevant kinase inhibitors. These findings represent the identification and initial characterization of a novel class of compounds that inhibit ERK1/2 signalling functions and their potential utility for elucidating ERK1/2 and other signalling events that control the growth and survival of cancer cells containing elevated ERK1/2 activity.


Asunto(s)
Genes Inmediatos-Precoces/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf/genética , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Simulación por Computador , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Células Jurkat , Ligandos , Sistema de Señalización de MAP Quinasas/genética , Melanoma/genética , Melanoma/patología , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Fosforilación , Regiones Promotoras Genéticas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-fos/química , Proteínas Proto-Oncogénicas c-fos/metabolismo , Elemento de Respuesta al Suero , Factor de Transcripción AP-1/genética
11.
Proc Natl Acad Sci U S A ; 109(21): 8091-6, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22573813

RESUMEN

DNA base excision repair is essential for maintaining genomic integrity and for active DNA demethylation, a central element of epigenetic regulation. A key player is thymine DNA glycosylase (TDG), which excises thymine from mutagenic G·T mispairs that arise by deamination of 5-methylcytosine (mC). TDG also removes 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC produced by Tet enzymes. Recent studies show that the glycosylase activity of TDG is essential for active DNA demethylation and for embryonic development. Our understanding of how repair enzymes excise modified bases without acting on undamaged DNA remains incomplete, particularly for mismatch glycosylases such as TDG. We solved a crystal structure of TDG (catalytic domain) bound to a substrate analog and characterized active-site residues by mutagenesis, kinetics, and molecular dynamics simulations. The studies reveal how TDG binds and positions the nucleophile (water) and uncover a previously unrecognized catalytic residue (Thr197). Remarkably, mutation of two active-site residues (Ala145 and His151) causes a dramatic enhancement in G·T glycosylase activity but confers even greater increases in the aberrant removal of thymine from normal A·T base pairs. The strict conservation of these residues may reflect a mechanism used to strike a tolerable balance between the requirement for efficient repair of G·T lesions and the need to minimize aberrant action on undamaged DNA, which can be mutagenic and cytotoxic. Such a compromise in G·T activity can account in part for the relatively weak G·T activity of TDG, a trait that could potentially contribute to the hypermutability of CpG sites in cancer and genetic disease.


Asunto(s)
Dominio Catalítico/fisiología , Reparación del ADN/fisiología , Timina ADN Glicosilasa/química , Timina ADN Glicosilasa/metabolismo , Agua/química , 5-Metilcitosina/metabolismo , Islas de CpG/genética , Cristalografía , Activación Enzimática/fisiología , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Mutagénesis/fisiología , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Estructura Terciaria de Proteína/fisiología , Especificidad por Sustrato , Timina/metabolismo , Timina ADN Glicosilasa/genética , Uracilo/metabolismo , Uracil-ADN Glicosidasa/química , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
12.
Proc Natl Acad Sci U S A ; 109(15): 5633-8, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22451934

RESUMEN

Helicobacter pylori NikR (HpNikR) is a nickel-dependent transcription factor that regulates multiple genes in the H. pylori pathogen. There are conflicting data regarding the locations of the Ni(II) sites and the role of Ni(II) coordination in DNA recognition. Herein, we report crystal structures of (i) the metal-binding domain (MBD) of HpNikR (3.08 Å) and (ii) a mutant, H74A (2.04 Å), designed to disrupt native Ni(II) coordination. In the MBD structure, four nickel ions are coordinated to two different types of nickel sites (4-coordinate, square planar, and 5/6-coordinate, square pyramidal/octahedral). In the H74A structure, all four nickel ions are coordinated to 4-coordinate square-planar sites. DNA-binding studies reveal tighter binding for target DNA sequences for holo-HpNikR compared with the affinities of Ni(II) reconstituted apo-HpNikR and H74A for these same DNA targets, supporting a role for Ni(II) coordination to 5/6 sites in DNA recognition. Small-angle X-ray scattering studies of holo-HpNikR and H74A reveal a high degree of conformational flexibility centered at the DNA-binding domains of H74A, which is consistent with disorder observed in the crystal structure of the protein. A model of DNA recognition by HpNikR is proposed in which Ni(II) coordination to specific sites in the MBD have a long-range effect on the flexibility of the DNA-binding domains and, consequently, the DNA recognition properties.


Asunto(s)
Proteínas Bacterianas/metabolismo , Complejos de Coordinación/metabolismo , ADN/metabolismo , Helicobacter pylori/metabolismo , Níquel/metabolismo , Proteínas Represoras/metabolismo , Anisotropía , Proteínas Bacterianas/química , Sitios de Unión , Cristalografía por Rayos X , Fluorescencia , Concentración de Iones de Hidrógeno , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Estructura Terciaria de Proteína , Proteínas Represoras/química , Dispersión del Ángulo Pequeño , Terminología como Asunto , Difracción de Rayos X
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 2950-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25372685

RESUMEN

Endoxylanases classified into glycoside hydrolase family 30 subfamily 8 (GH30-8) are known to hydrolyze the hemicellulosic polysaccharide glucuronoxylan (GX) but not arabinoxylan or neutral xylooligosaccharides. This is owing to the specificity of these enzymes for the α-1,2-linked glucuronate (GA) appendage of GX. Limit hydrolysis of this substrate produces a series of aldouronates each containing a single GA substituted on the xylose penultimate to the reducing terminus. In this work, the structural and biochemical characterization of xylanase 30A from Clostridium papyrosolvens (CpXyn30A) is presented. This xylanase possesses a high degree of amino-acid identity to the canonical GH30-8 enzymes, but lacks the hallmark ß8-α8 loop region which in part defines the function of this GH30 subfamily and its role in GA recognition. CpXyn30A is shown to have a similarly low activity on all xylan substrates, while hydrolysis of xylohexaose revealed a competing transglycosylation reaction. These findings are directly compared with the model GH30-8 enzyme from Bacillus subtilis, XynC. Despite its high sequence identity to the GH30-8 enzymes, CpXyn30A does not have any apparent specificity for the GA appendage. These findings confirm that the typically conserved ß8-α8 loop region of these enzymes influences xylan substrate specificity but not necessarily ß-1,4-xylanase function.


Asunto(s)
Clostridium/enzimología , Xilosidasas/química , Secuencia de Aminoácidos , Bacillus subtilis/enzimología , Clostridium/química , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Especificidad por Sustrato , Xilosidasas/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-38817739

RESUMEN

Polyorganophosphazenes are water-soluble macromolecules with immunoadjuvant activity that self-assemble with proteins to enable biological functionality. Direct imaging by cryogenic electron microscopy uncovers the coil structure of those highly charged macromolecules. The successful visualization of individual polymer chains within the vitrified state is achieved in the absence of additives for contrast enhancement and is attributed to the high mass contrast of the inorganic backbone. Upon assembly with proteins, multiple protein copies bind at the single polymer chain level resulting in structures reminiscent of compact spherical complexes or stiffened coils. The outcome depends on protein characteristics and cannot be deduced by commonly used characterization techniques, such as light scattering, thus revealing direct morphological insights crucial for understanding biological activity. Atomic force microscopy supports the morphology outcomes while advanced analytical techniques confirm protein-polymer binding. The chain visualization methodology provides tools for gaining insights into the processes of supramolecular assembly and mechanistic aspects of polymer enabled vaccine delivery.

15.
Biochemistry ; 52(9): 1547-58, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23406372

RESUMEN

Cathelicidins form a family of small host defense peptides distinct from another class of cationic antimicrobial peptides, the defensins. They are expressed as large precursor molecules with a highly conserved pro-domain known as the cathelin-like domain (CLD). CLDs have high degrees of sequence homology to cathelin, a protein isolated from pig leukocytes and belonging to the cystatin family of cysteine protease inhibitors. In this report, we describe for the first time the X-ray crystal structure of the human CLD (hCLD) of the sole human cathelicidin, LL-37. The structure of the hCLD, determined at 1.93 Å resolution, shows the cystatin-like fold and is highly similar to the structure of the CLD of the pig cathelicidin, protegrin-3. We assayed the in vitro antibacterial activities of the hCLD, LL-37, and the precursor form, pro-cathelicidin (also known as hCAP18), and we found that the unprocessed protein inhibited the growth of Gram-negative bacteria with efficiencies comparable to that of the mature peptide, LL-37. In addition, the antibacterial activity of LL-37 was not inhibited by the hCLD intermolecularly, because exogenously added hCLD had no effect on the bactericidal activity of the mature peptide. The hCLD itself lacked antimicrobial function and did not inhibit the cysteine protease, cathepsin L. Our results contrast with previous reports of hCLD activity. A comparative structural analysis between the hCLD and the cysteine protease inhibitor stefin A showed why the hCLD is unable to function as an inhibitor of cysteine proteases. In this respect, the cystatin scaffold represents an ancestral structural platform from which proteins evolved divergently, with some losing inhibitory functions.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Animales , Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Catepsina L/antagonistas & inhibidores , Cristalografía por Rayos X , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Humanos , Modelos Moleculares , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/metabolismo , Porcinos , Catelicidinas
16.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 2): 150-67, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23385452

RESUMEN

As a result of substantial instrumental automation and the continuing improvement of software, crystallographic studies of biomolecules are conducted by non-experts in increasing numbers. While improved validation almost ensures that major mistakes in the protein part of structure models are exceedingly rare, in ligand-protein complex structures, which in general are most interesting to the scientist, ambiguous ligand electron density is often difficult to interpret and the modelled ligands are generally more difficult to properly validate. Here, (i) the primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) the most common categories of building errors or overinterpretation are classified; (iii) a few instructive and specific examples are discussed in detail, including an electron-density-based analysis of ligand structures that do not contain any ligands; (iv) means of avoiding such mistakes are suggested and the implications for database validity are discussed and (v) a user-friendly software tool that allows non-expert users to conveniently inspect ligand density is provided.


Asunto(s)
Cristalografía por Rayos X , Bases de Datos de Proteínas , Electrones , Modelos Moleculares , Proteínas/química , Secuencia de Aminoácidos , Animales , Bovinos , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Cristalografía por Rayos X/normas , Glicosilación , Humanos , Ligandos , Datos de Secuencia Molecular , Unión Proteica , Proteínas/metabolismo , Proteínas/normas , Reproducibilidad de los Resultados
17.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2555-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24311596

RESUMEN

Apurinic/apyrimidinic endonuclease 1 (APE1) mediates the repair of abasic sites and other DNA lesions and is essential for base-excision repair and strand-break repair pathways. APE1 hydrolyzes the phosphodiester bond at abasic sites, producing 5'-deoxyribose phosphate and the 3'-OH primer needed for repair synthesis. It also has additional repair activities, including the removal of 3'-blocking groups. APE1 is a powerful enzyme that absolutely requires Mg2+, but the stoichiometry and catalytic function of the divalent cation remain unresolved for APE1 and for other enzymes in the DNase I superfamily. Previously reported structures of DNA-free APE1 contained either Sm3+ or Pb2+ in the active site. However, these are poor surrogates for Mg2+ because Sm3+ is not a cofactor and Pb2+ inhibits APE1, and their coordination geometry is expected to differ from that of Mg2+. A crystal structure of human APE1 was solved at 1.92 Šresolution with a single Mg2+ ion in the active site. The structure reveals ideal octahedral coordination of Mg2+ via two carboxylate groups and four water molecules. One residue that coordinates Mg2+ directly and two that bind inner-sphere water molecules are strictly conserved in the DNase I superfamily. This structure, together with a recent structure of the enzyme-product complex, inform on the stoichiometry and the role of Mg2+ in APE1-catalyzed reactions.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Magnesio/química , Dominio Catalítico , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , Cristalografía por Rayos X , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Humanos , Magnesio/metabolismo , Modelos Moleculares , Conformación Proteica
20.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 69(Pt 2): 195-200, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23385767

RESUMEN

Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein-ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein-ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein-ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/.


Asunto(s)
Electrones , Programas Informáticos , Humanos , Ligandos , NADP/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA